SN 2012aw , the SIMBAD biblio

SN 2012aw , the SIMBAD biblio (208 results) C.D.S. - SIMBAD4 rel 1.8 - 2024.06.06CEST22:02:36


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2012IBVS.6024....1H 1         O           2 5 Photometric sequences and astrometric positions of SN 2011fe in M101 and SN 2012aw in M95. HENDEN A., KRAJCI T. and MUNARI U.
2012ApJ...754L..21F 39           X         1 30 10 Evidence for asymmetric distribution of circumstellar material around type Ia supernovae. FORSTER F., GONZALEZ-GAITAN S., ANDERSON J., et al.
2012MNRAS.424.2841H viz 39           X         1 245 30 A central excess of stripped-envelope supernovae within disturbed galaxies. HABERGHAM S.M., JAMES P.A. and ANDERSON J.P.
2012ApJ...756..131V 1069 T K A     X C       26 30 61 The red supergiant progenitor of
supernova 2012aw (
PTF12bvh) in Messier 95.
VAN DYK S.D., CENKO S.B., POZNANSKI D., et al.
2012CBET.3054....1F 41 T       O X         2 11 Supernova 2012aw in M95 = PSN J10435372+1140177. FAGOTTI P., DIMAI A., QUADRI U., et al.
2012CBET.3054....2I 40 T       O X         3 7 Supernova 2012aw in M95 = PSN J10435372+1140177. ITOH R., UI T. and YAMANAKA M.
2012CBET.3054....3M 40 T       O X         2 6 Supernova 2012aw in M95 = PSN J10435372+1140177. MUNARI U., VAGNOZZI A. and CASTELLANI F.
2012CBET.3054....4S 40 T       O X         3 11 Supernova 2012aw in M95 = PSN J10435372+1140177. SIVIERO A., TOMASELLA L., PASTORELLO A., et al.
2012ApJ...759L..13F 1498 T K A     X C       37 5 55 Red and dead: the progenitor of
SN 2012aw in M95.
FRASER M., MAUND J.R., SMARTT S.J., et al.
2012ApJ...759...20K 492 T K A     X C       10 1 87 On absorption by circumstellar dust, with the progenitor of
SN 2012aw as a case study.
KOCHANEK C.S., KHAN R. and DAI X.
2012JRASC.106...95O 2 0 News notes : Serpent dust devil; First Earth Trojan asteroid identified; List of five-year technology development priorities to assist NASA planning; Ten-year study shows melt of 4.3 trillion tons of global land ice; Supernova in M95. OAKES A.I.
2012ApJ...761...26J 39           X         1 67 30 Supernova remnant progenitor masses in M31. JENNINGS Z.G., WILLIAMS B.F., MURPHY J.W., et al.
2012ApJ...761...63P 15       D               1 24 26 Gravitational waves from fallback accretion onto neutron stars. PIRO A.L. and THRANE E.
2012MNRAS.426.1465P 40           X         1 100 333 An empirical relation between sodium absorption and dust extinction. POZNANSKI D., PROCHASKA J.X. and BLOOM J.S.
2013ApJ...764L..13B 1194 T K A     X C       29 13 27 The long-lived UV "plateau" of
SN 2012aw.
BAYLESS A.J., PRITCHARD T.A., ROMING P.W.A., et al.
2013MNRAS.428.1927C 16       D               2 330 52 On the association between core-collapse supernovae and HII regions. CROWTHER P.A.
2013ApJ...767....3D 41           X         1 28 138 The temperatures of red supergiants. DAVIES B., KUDRITZKI R.-P., PLEZ B., et al.
2013MNRAS.431L.102M 79           X         2 12 27 Supernova 2012ec: identification of the progenitor and early monitoring with PESSTO. MAUND J.R., FRASER M., SMARTT S.J., et al.
2013MNRAS.433.1871B viz 3745 T K A D     X C       95 32 76
Supernova 2012aw - a high-energy clone of archetypal Type IIP SN 1999em.
BOSE S., KUMAR B., SUTARIA F., et al.
2013ApJ...774...30C 39           X         1 22 17 The progenitor of SN 2011ja: clues from circumstellar interaction. CHAKRABORTI S., RAY A., SMITH R., et al.
2013MNRAS.434.1636T 80           X         2 21 92 Comparison of progenitor mass estimates for the type IIP SN 2012A. TOMASELLA L., CAPPELLARO E., FRASER M., et al.
2013MNRAS.435..771M viz 39           X         1 17 20 Photometric evolution, orbital modulation and progenitor of Nova Mon 2012. MUNARI U., DALLAPORTA S., CASTELLANI F., et al.
2013MNRAS.436..774E viz 55       D     X         2 250 249 The death of massive stars - II. Observational constraints on the progenitors of type Ibc supernovae. ELDRIDGE J.J., FRASER M., SMARTT S.J., et al.
2013A&A...558A.131G viz 56       D     X         2 60 160 Fundamental properties of core-collapse supernova and GRB progenitors: predicting the look of massive stars before death. GROH J.H., MEYNET G., GEORGY C., et al.
2013MNRAS.436.3224P 211       D     X   F     5 26 30 An emerging coherent picture of red supergiant supernova explosions. POZNANSKI D.
2014ApJ...781...13L 122           X C       2 25 228 A new population of ultra-long duration gamma-ray bursts. LEVAN A.J., TANVIR N.R., STARLING R.L.C., et al.
2014ApJ...782...30Y 1046 T K A     X C       25 22 5 Electron cooling in a young radio supernova:
SN 2012aw.
YADAV N., RAY A., CHAKRABORTI S., et al.
2014MNRAS.438..938M 119           X         3 16 33 A late-time view of the progenitors of five Type IIP supernovae. MAUND J.R., REILLY E. and MATTILA S.
2014MNRAS.438.1577M 80           X         2 11 33 A new precise mass for the progenitor of the Type IIP SN 2008bk. MAUND J.R., MATTILA S., RAMIREZ-RUIZ E., et al.
2014ApJ...782...98B 882   K   D     X C       22 21 47 Distance determination to eight galaxies using expanding photosphere method. BOSE S. and KUMAR B.
2014MNRAS.439L..56F 43           X         1 6 48 On the progenitor of the Type IIP SN 2013ej in M74. FRASER M., MAUND J.R., SMARTT S.J., et al.
2014AJ....147...79S 169             C F     1 4 100 Science with a wide-field UV transient explorer. SAGIV I., GAL-YAM A., OFEK E.O., et al.
2014MNRAS.439.3694J 1353 T K A D     X C F     32 4 123 The nebular spectra of
SN 2012aw and constraints on stellar nucleosynthesis from oxygen emission lines.
JERKSTRAND A., SMARTT S.J., FRASER M., et al.
2014ApJ...787..139D 2228 T K A     X C       55 22 78 The Type IIP supernova
2012aw in M95: hydrodynamical modeling of the photospheric phase from accurate spectrophotometric monitoring.
DALL'ORA M., BOTTICELLA M.T., PUMO M.L., et al.
2014ApJ...787..157P 16       D               2 51 35 Bolometric and UV light curves of core-collapse supernovae. PRITCHARD T.A., ROMING P.W.A., BROWN P.J., et al.
2014MNRAS.440.1917D 16       D               2 32 57 On the lack of X-ray bright Type IIP supernovae. DWARKADAS V.V.
2014MNRAS.442....2K 2006 T K A D S   X C       49 30 5 Broad-band polarimetric follow-up of Type IIP
SN 2012aw.
KUMAR B., PANDEY S.B., ESWARAIAH C., et al.
2014ApJ...795..142G viz 16       D               1 448 7 Defining photometric peculiar type Ia supernovae. GONZALEZ-GAITAN S., HSIAO E.Y., PIGNATA G., et al.
2014AJ....148..107R 291       D     X C       7 104 44 Photospheric magnitude diagrams for Type II supernovae: a promising tool to compute distances. RODRIGUEZ O., CLOCCHIATTI A. and HAMUY M.
2014A&A...571A..77N 354       S   X C       7 10 15 A semianalytical light curve model and its application to Type IIP supernovae. NAGY A.P., ORDASI A., VINKO J., et al.
2014MNRAS.445.3263H 319           X C F     6 26 217 ASASSN-14ae: a tidal disruption event at 200 Mpc. HOLOIEN T.W.-S., PRIETO J.L., BERSIER D., et al.
2013NewA...20...30M viz 648 T K A     X C       15 27 101 BVRI lightcurves of supernovae SN 2011fe in M101,
SN 2012aw in M95, and SN 2012cg in NGC 4424.
MUNARI U., HENDEN A., BELLIGOLI R., et al.
2015ApJ...799..215P viz 850       D     X C       21 53 38 A global model of the light curves and expansion velocities of Type II-Plateau supernovae. PEJCHA O. and PRIETO J.L.
2015MNRAS.448.2312B 2582   K A D S   X C       64 21 9 SN 2012ec: mass of the progenitor from PESSTO follow-up of the photospheric phase. BARBARINO C., DALL'ORA M., BOTTICELLA M.T., et al.
2015MNRAS.448.2482J 413       D     X C       10 18 27 Supersolar Ni/Fe production in the Type IIP SN 2012ec. JERKSTRAND A., SMARTT S.J., SOLLERMAN J., et al.
2015MNRAS.448.2608V viz 17       D               1 21 53 Supernova 2013by: a Type IIL supernova with a IIP-like light-curve drop. VALENTI S., SAND D., STRITZINGER M., et al.
2012ATel.3979....1B 155 T         X         3 2 ~ Swift/UVOT observations of
PSN
J10435372+1140177
in M 95.
BROWN P.J.
2012ATel.3991....1E 78           X         2 2 5 Identification of a candidate progenitor for SN 2012aw in M 95. ELIAS-ROSA N., VAN DYK S.D., CUILLANDRE J.-C., et al.
2012ATel.3994....1F 194 T         X         4 2 4 A low mass red supergiant progenitor candidate for
SN 2012aw.
FRASER M., MAUND J.R., SMARTT S.J., et al.
2012ATel.3995....1I 118 T         X         2 2 11 Swift XRT detection of
Supernova 2012aw in X-rays.
IMMLER S. and BROWN P.J.
2012ATel.3996....1P 196 T         X         4 1 6 PTF observations of
SN2012aw (
PTF12bvh) and explosion date constraints.
POZNANSKI D., NUGENT P.E., OFEK E.O., et al.
2012ATel.4010....1Y 120 T         X         2 1 9 Radio detection of
SN 2012aw.
YADAV N., CHAKRABORTI S. and RAY A.
2012ATel.4012....1S 118 T         X         2 2 9 Radio variability confirmed for
SN 2012aw in M 95.
STOCKDALE C.J., RYDER S.D., VAN DYK S.D., et al.
2012ATel.4033....1L 233 T         X         5 3 7 Early-time polarization of the Type II-Plateau Supernova
SN 2012aw.
LEONARD D.C., PIGNATA G., DESSART L., et al.
2012ATel.4223....1H 39           X         1 3 ~ Classification of LSQ 12dcl as a type II SN. HADJIYSKA E., RABINOWITZ D., BALTAY C., et al.
2015ApJ...805...98B 199           X C       4 8 14 The effects on supernova shock breakout and Swift light curves due to the mass of the hydrogen-rich envelope. BAYLESS A.J., EVEN W., FREY L.H., et al.
2015ApJ...806..160B 914     A D     X C       23 23 61 SN 2013ej: a Type IIL supernova with weak signs of interaction. BOSE S., SUTARIA F., KUMAR B., et al.
2015ApJ...806..195V 699 T K A     X C       16 24 5 LEGUS discovery of a light echo around supernova 2012aw. VAN DYK S.D., LEE J.C., ANDERSON J., et al.
2015A&A...578A.100W viz 79           X         2 45 7 The infrared massive stellar content of M 83. WILLIAMS S.J., BONANOS A.Z., WHITMORE B.C., et al.
2013ATel.5275....1L 40           X         1 3 11 SN 2013ej is a highly polarized Type II-Plateau Supernova. LEONARD D.C., PIGNATA G., DESSART L., et al.
2015MNRAS.450.2373B 1414     A     X C F     34 19 37 SN 2013ab: a normal Type IIP supernova in NGC 5669. BOSE S., VALENTI S., MISRA K., et al.
2015MNRAS.450.3137T viz 79           X         2 27 32 SN 2009ib: a Type II-P supernova with an unusually long plateau. TAKATS K., PIGNATA G., PUMO M.L., et al.
2015MNRAS.451.2212G 42           X         1 25 107 The rise-time of Type II supernovae. GONZALEZ-GAITAN S., TOMINAGA N., MOLINA J., et al.
2016AJ....151...33G viz 16       D               1 168 81 UBVRIz light curves of 51 Type II supernovae. GALBANY L., HAMUY M., PHILLIPS M.M., et al.
2016MNRAS.455.2712B 698       D     X C F     16 40 3 Photometric and polarimetric observations of fast declining Type II supernovae 2013hj and 2014G. BOSE S., KUMAR B., MISRA K., et al.
2016ApJ...818....3K 86             C       1 24 153 Flash spectroscopy: emission lines from the ionized circumstellar material around <10-day-old Type II supernovae. KHAZOV D., YARON O., GAL-YAM A., et al.
2016ApJ...818..123B 89           X         2 18 176 The development of explosions in axisymmetric ab initio core-collapse supernova simulations of 12-25 M stars. BRUENN S.W., LENTZ E.J., HIX W.R., et al.
2016MNRAS.456L..16F 1070 T K A     X C       25 3 8 The disappearance of the progenitor of
SN 2012aw in late-time imaging.
FRASER M.
2016MNRAS.456..323K 40           X         1 28 11 Supernova 2013fc in a circumnuclear ring of a luminous infrared galaxy: the big brother of SN 1998S. KANGAS T., MATTILA S., KANKARE E., et al.
2016MNRAS.456.2848H viz 16       D               1 919 37 Supernovae and their host galaxies - III. The impact of bars and bulges on the radial distribution of supernovae in disc galaxies. HAKOBYAN A.A., KARAPETYAN A.G., BARKHUDARYAN L.V., et al.
2016ApJ...820...23G 47           X         1 11 82 Shock breakout and early light curves of Type II-p supernovae observed with Kepler. GARNAVICH P.M., TUCKER B.E., REST A., et al.
2016ApJ...820...33R viz 417       D     X C       10 70 56 Type II supernova energetics and comparison of light curves to shock-cooling models. RUBIN A., GAL-YAM A., DE CIA A., et al.
2016A&A...587L...7T viz 16       D               2 78 6 Metallicity from Type II supernovae from the (i)PTF. TADDIA F., MOQUIST P., SOLLERMAN J., et al.
2016ApJ...822....6D 282           X         7 23 37 Extensive spectroscopy and photometry of the Type IIP supernova 2013ej. DHUNGANA G., KEHOE R., VINKO J., et al.
2016ApJ...823..127N 258       D     X C       6 25 27 The importance of 56Ni in shaping the light curves of type II supernovae. NAKAR E., POZNANSKI D. and KATZ B.
2016A&A...589A..53N 297       D     X C       7 18 16 A two-component model for fitting light curves of core-collapse supernovae. NAGY A.P. and VINKO J.
2016ApJ...826L...3T 83           X         2 4 13 Terrestrial effects of nearby supernovae in the early pleistocene. THOMAS B.C., ENGLER E.E., KACHELRIESS M., et al.
2016MNRAS.459.3939V viz 539       D     X C F     12 210 225 The diversity of Type II supernova versus the similarity in their progenitors. VALENTI S., HOWELL D.A., STRITZINGER M.D., et al.
2016AJ....152..102B viz 81               F     1 24 32 Interpreting flux from broadband photometry. BROWN P.J., BREEVELD A., ROMING P.W.A., et al.
2016MNRAS.461.2003Y viz 443           X   F     10 18 32 450 d of Type II SN 2013ej in optical and near-infrared. YUAN F., JERKSTRAND A., VALENTI S., et al.
2016MNRAS.461.3296N viz 40           X         1 355 95 Multimessenger signals of long-term core-collapse supernova simulations: synergetic observation strategies. NAKAMURA K., HORIUCHI S., TANAKA M., et al.
2016MNRAS.463.1269B 81           X         2 29 55 The evolution of red supergiants to supernova in NGC 2100. BEASOR E.R. and DAVIES B.
2016ApJ...832..155F 49           X         1 3 28 The High Cadence Transient Survey (HITS). I. Survey design and supernova shock breakout constraints. FORSTER F., MAUREIRA J.C., MARTIN J.S., et al.
2016ApJ...833..231T 16       D               1 103 50 A systematic study of mid-infrared emission from core-collapse supernovae with SPIRITS. TINYANONT S., KASLIWAL M.M., FOX O.D., et al.
2017ApJ...834...60Y 57       D     X         2 33 17 Interstellar-medium mapping in M82 through light echoes around supernova 2014J. YANG Y., WANG L., BAADE D., et al.
2017ApJ...834..118M 42           X         1 22 35 Asphericity, interaction, and dust in the type II-P/II-L supernova 2013EJ in Messier 74. MAUERHAN J.C., VAN DYK S.D., JOHANSSON J., et al.
2017A&A...597A..92K 41           X         1 19 15 Core-collapse supernova progenitor constraints using the spatial distributions of massive stars in local galaxies. KANGAS T., PORTINARI L., MATTILA S., et al.
2017MNRAS.464.3013P 219       D     X C F     4 30 11 Radiation-hydrodynamical modelling of underluminous Type II plateau supernovae. PUMO M.L., ZAMPIERI L., SPIRO S., et al.
2017ApJ...840..105M 82           X         2 4 4 A supernova at 50 pc: effects on the Earth's atmosphere and biota. MELOTT A.L., THOMAS B.C., KACHELRIESS M., et al.
2017MNRAS.467..369S 2697       D     X C F     65 79 11 After the fall: late-time spectroscopy of Type IIP supernovae. SILVERMAN J.M., PICKETT S., WHEELER J.C., et al.
2017ApJ...846...50M 16       D               1 40 15 IPTF15eqv: multiwavelength expose of a peculiar calcium-rich transient. MILISAVLJEVIC D., PATNAUDE D.J., RAYMOND J.C., et al.
2017ApJ...846..101B 204           X C       4 2 2 The SuperNovae Analysis aPplication (SNAP). BAYLESS A.J., FRYER C.L., WOLLAEGER R., et al.
2017MNRAS.470.1642F 51           X         1 14 147 Pre-supernova outbursts via wave heating in massive stars - I. Red supergiants. FULLER J.
2017MNRAS.469.2202M 666       D S   X C       15 30 28 The resolved stellar populations around 12 Type IIP supernovae. MAUND J.R.
2017ApJ...850...89G 41           X         1 252 84 Type II supernova spectral diversity. I. Observations, sample characterization, and spectral line evolution. GUTIERREZ C.P., ANDERSON J.P., HAMUY M., et al.
2018MNRAS.473..513F 675       D     X C F     15 29 10 The evolution of temperature and bolometric luminosity in Type II supernovae. FARAN T., NAKAR E. and POZNANSKI D.
2018MNRAS.474.2116D 141       D     X         4 58 97 The initial masses of the red supergiant progenitors to Type II supernovae. DAVIES B. and BEASOR E.R.
2018MNRAS.475..277J 329           X C F     6 24 11 Emission line models for the lowest mass core-collapse supernovae - I. Case study of a 9 M one-dimensional neutrino-driven explosion. JERKSTRAND A., ERTL T., JANKA H.-T., et al.
2018MNRAS.475.1937T 123           X C       2 27 11 SNe 2013K and 2013am: observed and physical properties of two slow, normal Type IIP events. TOMASELLA L., CAPPELLARO E., PUMO M.L., et al.
2018MNRAS.475.3959H 428       D     X C F     9 26 18 SN 2016X: a type II-P supernova with a signature of shock breakout from explosion of a massive red supergiant. HUANG F., WANG X.-F., HOSSEINZADEH G., et al.
2018A&A...611A..25G viz 41           X         1 43 12 An updated Type II supernova Hubble diagram. GALL E.E.E., KOTAK R., LEIBUNDGUT B., et al.
2018MNRAS.476.2629M 41           X         1 52 15 The very young resolved stellar populations around stripped-envelope supernovae. MAUND J.R.
2018ApJ...858...15M 20       D               2 23 111 Measuring the progenitor masses and dense circumstellar material of Type II supernovae. MOROZOVA V., PIRO A.L. and VALENTI S.
2018A&A...613A..35K 16       D               3 171 55 Constraints on core-collapse supernova progenitors from explosion site integral field spectroscopy. KUNCARAYAKTI H., ANDERSON J.P., GALBANY L., et al.
2018ApJ...861....1N 42           X         1 4 4 Multi-band polarization of Type IIP supernovae due to light echo from circumstellar dust. NAGAO T., MAEDA K. and TANAKA M.
2018ApJ...862..107B 247           X C       5 26 7 ASASSN-15nx: a luminous Type II supernova with a "perfect" linear decline. BOSE S., DONG S., KOCHANEK C.S., et al.
2018NatAs...2..574A 1 12 16 The lowest-metallicity type II supernova from the highest-mass red supergiant progenitor. ANDERSON J.P., DESSART L., GUTIERREZ C.P., et al.
2018ApJ...863..163N viz 305       D     X C       7 24 ~ Long-term behavior of a Type IIP supernova SN 2004dj in the radio bands. NAYANA A.J., CHANDRA P. and RAY A.K.
2018MNRAS.473.3863L 99       D         F     3 83 13 Progenitors of low-luminosity Type II-Plateau supernovae. LISAKOV S.M., DESSART L., HILLIER D.J., et al.
2018MNRAS.479.2421D 387       D     X   F     9 48 10 SN 2015ba: a Type IIP supernova with a long plateau. DASTIDAR R., MISRA K., HOSSEINZADEH G., et al.
2018MNRAS.480.2072K 41           X         1 30 9 A potential progenitor for the Type Ic supernova 2017ein. KILPATRICK C.D., TAKARO T., FOLEY R.J., et al.
2018MNRAS.480.2475S 222       D     X C       5 58 8 ASASSN-14dq: a fast-declining Type II-P supernova in a low-luminosity host galaxy. SINGH A., SRIVASTAV S., KUMAR B., et al.
2018MNRAS.481.2536K 370           X C       8 20 14 The dusty progenitor star of the Type II supernova 2017eaw. KILPATRICK C.D. and FOLEY R.J.
2019ApJ...870....1E viz 21       D               1 13 60 PUSHing core-collapse supernovae to explosions in spherical symmetry. II. Explodability and remnant properties. EBINGER K., CURTIS S., FROHLICH C., et al.
2019ApJ...870....2C viz 93             C       1 7 67 PUSHing core-collapse supernovae to explosions in spherical symmetry. III. Nucleosynthesis yields. CURTIS S., EBINGER K., FROHLICH C., et al.
2019ApJ...870L..16S 17       D               1 39 ~ Bright Type IIP supernovae in (low-metallicity) galaxies. SCOTT S., NICHOLL M., BLANCHARD P., et al.
2019PASP..131a4002H viz 167           X C       3 173 56 Carnegie Supernova Project-II: the near-infrared spectroscopy program. HSIAO E.Y., PHILLIPS M.M., MARION G.H., et al.
2019MNRAS.483.5459R viz 184       D     X         5 66 5 Type II supernovae as distance indicators at near-IR wavelengths. RODRIGUEZ O., PIGNATA G., HAMUY M., et al.
2019ApJ...873L...3B viz 167             C F     2 13 5 Strongly bipolar inner ejecta of the normal Type IIP supernova ASASSN-16at. BOSE S., DONG S., ELIAS-ROSA N., et al.
2019ApJ...875..136V viz 486     A     X C       11 26 47 The Type II-plateau supernova 2017eaw in NGC 6946 and its red supergiant progenitor. VAN DYK S.D., ZHENG W., MAUND J.R., et al.
2019ApJ...876...19S 895       D     X C       21 22 37 The Type II-P supernova 2017eaw: from explosion to the nebular phase. SZALAI T., VINKO J., KONYVES-TOTH R., et al.
2019MNRAS.486.2850D 125           X   F     2 27 3 SN 2016B a.k.a. ASASSN-16ab: a transitional Type II supernova. DASTIDAR R., MISRA K., SINGH M., et al.
2019ApJS..241...38S viz 351       D     X C       8 220 38 A comprehensive analysis of Spitzer supernovae. SZALAI T., ZSIROS S., FOX O.D., et al.
2019MNRAS.487.2505K 171           X   F     3 15 62 Swift spectra of AT2018cow: a white dwarf tidal disruption event? KUIN N.P.M., WU K., OATES S., et al.
2019ApJ...881...22A viz 42           X         1 19 ~ KSP-SN-2016kf: a long-rising H-rich Type II supernova with unusually high 56Ni mass discovered in the KMTNet Supernova Program. AFSARIARDCHI N., MOON D.-S., DROUT M.R., et al.
2019ApJ...881..158S 142       D     X         4 14 ~ The initial mass-final luminosity relation of Type II supernova progenitors: hints of new physics? STRANIERO O., DOMINGUEZ I., PIERSANTI L., et al.
2019MNRAS.488.3089K 42           X         1 38 ~ On the observational behaviour of the highly polarized Type IIn supernova SN 2017hcc. KUMAR B., ESWARAIAH C., SINGH A., et al.
2019MNRAS.488.4239P viz 100       D       C       4 106 19 Comparison of the optical light curves of hydrogen-rich and hydrogen-poor type II supernovae. PESSI P.J., FOLATELLI G., ANDERSON J.P., et al.
2019ApJ...882...68S 17       D               1 27 ~ Observational signature of circumstellar interaction and 56Ni-mixing in the Type II Supernova 2016gfy. SINGH A., KUMAR B., MORIYA T.J., et al.
2019MNRAS.489..641M 17       D               1 42 ~ A comparison of explosion energies for simulated and observed core-collapse supernovae. MURPHY J.W., MABANTA Q. and DOLENCE J.C.
2019A&A...629A.124M 125     A D S   X C       2 15 ~ Mass discrepancy analysis for a select sample of Type II-Plateau supernovae. MARTINEZ L. and BERSTEN M.C.
2019A&A...631A...8H 1047     A D S   X C       24 19 38 Photometric and spectroscopic diversity of Type II supernovae. HILLIER D.J. and DESSART L.
2019MNRAS.489.5802V 17       D               1 72 28 Spectrophotometric templates for core-collapse supernovae and their application in simulations of time-domain surveys. VINCENZI M., SULLIVAN M., FIRTH R.E., et al.
2019ApJ...887....4D 560       D     X C       13 73 ~ Carnegie Supernova Project-II: near-infrared spectroscopic diversity of Type II supernovae. DAVIS S., HSIAO E.Y., ASHALL C., et al.
2019MNRAS.490.2799D 184       D       C F     5 109 41 The Berkeley sample of Type II supernovae: BVRI light curves and spectroscopy of 55 SNe II. DE JAEGER T., ZHENG W., STAHL B.E., et al.
2020MNRAS.492.2578S 95             C       1 5 50 Missing red supergiants and carbon burning. SUKHBOLD T. and ADAMS S.
2020ApJ...890..177K 43           X         1 19 ~ A new method to classify Type IIP/IIL supernovae based on their spectra. KOU S., CHEN X. and LIU X.
2020MNRAS.494L..53F 17       D               1 19 ~ The uncertain masses of progenitors of core-collapse supernovae and direct-collapse black holes. FARRELL E.J., GROH J.H., MEYNET G., et al.
2020ApJ...895L...3A 43           X         1 142 ~ Carnegie supernova Project-II: a new method to photometrically identify sub-types of extreme Type Ia supernovae. ASHALL C., LU J., BURNS C., et al.
2020MNRAS.496.3402D 104       D     X         3 23 56 A measurement of the Hubble constant from Type II supernovae. DE JAEGER T., STAHL B.E., ZHENG W., et al.
2020MNRAS.496.3725J 485   K   D     X C       11 18 ~ A low-luminosity core-collapse supernova very similar to SN 2005cs. JAGER Z., VINKO J., BIRO B.I., et al.
2020MNRAS.497..361M 102       D     X         3 44 ~ The low-luminosity Type II SN 2016aqf: a well-monitored spectral evolution of the Ni/Fe abundance ratio. MULLER-BRAVO T.E., GUTIERREZ C.P., SULLIVAN M., et al.
2020MNRAS.497.2227P 17       D               5 16 ~ Constraining early-time dust formation in core-collapse supernovae. PRIESTLEY F.D., BEVAN A., BARLOW M.J., et al.
2020ApJ...900...11W viz 43           X         1 22 12 Late-time circumstellar interaction of SN 2017eaw in NGC 6946. WEIL K.E., FESEN R.A., PATNAUDE D.J., et al.
2020A&A...641A.177M viz 17       D               1 288 ~ Stripped-envelope core-collapse supernova 56Ni masses. Persistently larger values than supernovae type II. MEZA N. and ANDERSON J.P.
2020MNRAS.499..974G 255           X C F     4 41 ~ SN 2017ivv: two years of evolution of a transitional Type II supernova. GUTIERREZ C.P., PASTORELLO A., JERKSTRAND A., et al.
2020A&A...642A..33D 230       D     X C       5 7 ~ Radiative-transfer modeling of nebular-phase type II supernovae. Dependencies on progenitor and explosion properties. DESSART L. and HILLIER D.J.
2020A&A...642A.143M 657       D     X C F     14 12 13 Progenitor properties of type II supernovae: fitting to hydrodynamical models using Markov chain Monte Carlo methods. MARTINEZ L., BERSTEN M.C., ANDERSON J.P., et al.
2020ApJ...903..132H viz 170           X         4 22 ~ A non-equipartition shock wave traveling in a dense circumstellar environment around SN 2020oi. HORESH A., SFARADI I., ERGON M., et al.
2021A&A...645A...6Z 87               F     4 34 29 Effect of binary evolution on the inferred initial and final core masses of hydrogen-rich, Type II supernova progenitors. ZAPARTAS E., DE MINK S.E., JUSTHAM S., et al.
2021ApJ...908...75B 17       D               1 556 32 The radio luminosity-risetime function of core-collapse supernovae. BIETENHOLZ M.F., BARTEL N., ARGO M., et al.
2021ApJ...909..145D 87             C       2 25 ~ SN 2013ai: a link between hydrogen-rich and hydrogen-poor core-collapse supernovae. DAVIS S., PESSI P.J., FRASER M., et al.
2021MNRAS.503.3472B 261           X C       5 36 7 ASASSN-18am/SN 2018gk: an overluminous Type IIb supernova from a massive progenitor. BOSE S., DONG S., KOCHANEK C.S., et al.
2021MNRAS.504.1009D 87               F     1 38 ~ The optical properties of three Type II supernovae: 2014cx, 2014cy, and 2015cz. DASTIDAR R., MISRA K., SINGH M., et al.
2021MNRAS.504.3544N 1523 T K A D     X C F     33 9 ~ Parameters of the type-IIP supernova
SN 2012aw.
NIKIFOROVA A.A., BAKLANOV P.V., BLINNIKOV S.I., et al.
2021ApJ...914...41J 87             C       1 18 8 A grid of core-collapse supernova remnant models. I. The effect of wind-driven mass loss. JACOVICH T., PATNAUDE D., SLANE P., et al.
2021MNRAS.505.1742R 148       D     X         4 264 9 The iron yield of normal Type II supernovae. RODRIGUEZ O., MEZA N., PINEDA-GARCIA J., et al.
2021MNRAS.505.3664N 44           X         1 14 10 Evidence for multiple origins of fast declining Type II supernovae from spectropolarimetry of SN 2013ej and SN 2017ahn. NAGAO T., PATAT F., TAUBENBERGER S., et al.
2021ApJS..255...29S viz 17       D               1 893 63 The Palomar Transient Factory core-collapse supernova host-galaxy sample. I. Host-galaxy distribution functions and environment dependence of core-collapse supernovae. SCHULZE S., YARON O., SOLLERMAN J., et al.
2021A&A...651A..10D 174           X         4 10 ~ Polarization signatures of a high-velocity scatterer in nebular-phase spectra of Type II supernovae. DESSART L., HILLIER D.J. and LEONARD D.C.
2021A&A...651A..19D 2768 T   A S   X C       61 16 ~ Multiepoch VLT-FORS spectropolarimetric observations of
supernova 2012aw reveal an asymmetric explosion.
DESSART L., LEONARD D.C., HILLIER D.J., et al.
2021A&A...652A..64D 523     A D S   X C       11 14 16 The explosion of 9-29 M stars as Type II supernovae: Results from radiative-transfer modeling at one year after explosion. DESSART L., HILLIER D.J., SUKHBOLD T., et al.
2021ApJ...919...17S 17       D               2 72 14 Spitzer's last look at extragalactic explosions: long-term evolution of interacting supernovae. SZALAI T., FOX O.D., ARENDT R.G., et al.
2021ApJ...921..143C 46           X         1 6 13 Core-collapse supernovae: from neutrino-driven 1D explosions to light curves and spectra. CURTIS S., WOLFE N., FROHLICH C., et al.
2021A&A...655A.105S viz 44           X         1 22 12 The Type II supernova SN 2020jfo in M 61, implications for progenitor system, and explosion dynamics. SOLLERMAN J., YANG S., SCHULZE S., et al.
2021ApJ...923...86C viz 17       D               1 813 3 Local environments of low-redshift supernovae. CRONIN S.A., UTOMO D., LEROY A.K., et al.
2022MNRAS.512.2777T 224           X   F     4 31 15 Progenitor and close-in circumstellar medium of type II supernova 2020fqv from high-cadence photometry and ultra-rapid UV spectroscopy. TINYANONT S., RIDDEN-HARPER R., FOLEY R.J., et al.
2022A&A...660A.138S viz 90           X         2 9 1 PGIR 20eid (SN 2020qmp): A Type IIP Supernova at 15.6 Mpc discovered by the Palomar Gattini-IR survey. SRINIVASARAGAVAN G.P., SFARADI I., JENCSON J., et al.
2022MNRAS.513.4556Z 18       D               1 41 1 SN 2019va: a Type IIP Supernova with Large Influence of Nickel-56 Decay on the Plateau-phase Light Curve. ZHANG X., WANG X., SAI H., et al.
2022ApJ...930...31B 18       D               1 90 3 Characterization of Supernovae Based on the Spectral-Temporal Energy Distribution: Two Possible SN Ib Subtypes. BENGYAT O. and GAL-YAM A.
2022ApJ...930...34T 45           X         1 23 7 SN 2020jfo: A Short-plateau Type II Supernova from a Low-mass Progenitor. TEJA R.S., SINGH A., SAHU D.K., et al.
2022MNRAS.514.4620D 19       D               1 26 26 A 5 per cent measurement of the Hubble-Lemaitre constant from Type II supernovae. DE JAEGER T., GALBANY L., RIESS A.G., et al.
2022MNRAS.514.5686P 18       D               2 87 9 Oxygen and calcium nebular emission line relationships in core-collapse supernovae and Ca-rich transients. PRENTICE S.J., MAGUIRE K., SIEBENALER L., et al.
2022ApJ...934...67B 449           X C       9 11 14 Connecting the Light Curves of Type IIP Supernovae to the Properties of Their Progenitors. BARKER B.L., HARRIS C.E., WARREN M.L., et al.
2022MNRAS.515..897R 466       D     X   F     10 122 8 Luminosity distribution of Type II supernova progenitors. RODRIGUEZ O.
2022ApJ...935...31H 90               F     1 27 13 Weak Mass Loss from the Red Supergiant Progenitor of the Type II SN 2021yja. HOSSEINZADEH G., KILPATRICK C.D., DONG Y., et al.
2022MNRAS.515.4302N 242       D     X   F     5 46 10 Dust masses for a large sample of core-collapse supernovae from optical emission line asymmetries: dust formation on 30-year time-scales. NICULESCU-DUVAZ M., BARLOW M.J., BEVAN A., et al.
2022ApJ...934..134V 358           X C       7 17 10 Early-time Ultraviolet Spectroscopy and Optical Follow-up Observations of the Type IIP Supernova 2021yja. VASYLYEV S.S., FILIPPENKO A.V., VOGL C., et al.
2022ApJ...936...98B 45           X         1 9 ~ Radio Spectra of SN 2020oi: Effects of Radiative Cooling on the Deduced Source Properties. BJORNSSON C.-I.
2022ApJ...936..101T 45           X         1 7 2 Modeling Extinction and Reddening Effects by Circumstellar Dust in the Betelgeuse Envelope in the Presence of Radiative Torque Disruption. TRUONG B., TRAM L.N., HOANG T., et al.
2022MNRAS.517.1483D 134           X   F     2 17 12 Explosion imminent: the appearance of red supergiants at the point of core-collapse. DAVIES B., PLEZ B. and PETRAULT M.
2022A&A...666A..82R 538           X C       11 18 ~ Type IIP supernova SN2016X in radio frequencies. RUIZ-CARMONA R., SFARADI I. and HORESH A.
2022AJ....164..250L 45           X         1 30 ~ Toward the Automated Detection of Light Echoes in Synoptic Surveys: Considerations on the Application of Deep Convolutional Neural Networks. LI X., BIANCO F.B., DOBLER G., et al.
2022ApJ...939..105B 90       S             1 121 10 Seven Years of Coordinated Chandra-NuSTAR Observations of SN 2014C Unfold the Extreme Mass-loss History of Its Stellar Progenitor. BRETHAUER D., MARGUTTI R., MILISAVLJEVIC D., et al.
2023ApJ...948L..19S 47           X         1 22 1 Scary Barbie: An Extremely Energetic, Long-duration Tidal Disruption Event Candidate without a Detected Host Galaxy at z = 0.995. SUBRAYAN B.M., MILISAVLJEVIC D., CHORNOCK R., et al.
2023ApJ...949L..12A 19       D               2 56 3 Constraining High-energy Neutrino Emission from Supernovae with IceCube. ABBASI R., ACKERMANN M., ADAMS J., et al.
2023ApJ...949...75V 93           X         2 9 2 The Type II-P Supernova 2019mhm and Constraints on its Progenitor System. VAZQUEZ J., KILPATRICK C.D., DIMITRIADIS G., et al.
2023A&A...673A.127S 886           X C F     17 11 ~ Hidden shock powering the peak of SN 2020faa. SALMASO I., CAPPELLARO E., TARTAGLIA L., et al.
2023MNRAS.518.5741S 19       D               2 22 5 What can Gaussian processes really tell us about supernova light curves? Consequences for Type II(b) morphologies and genealogies. STEVANCE H.F. and LEE A.
2023MNRAS.519..248A 327           X   F     6 46 3 Photometric and spectroscopic analysis of the Type II SN 2020jfo with a short plateau. AILAWADHI B., DASTIDAR R., MISRA K., et al.
2023MNRAS.519..471V 47           X         1 41 8 The disappearances of six supernova progenitors. VAN DYK S.D., DE GRAW A., BAER-WAY R., et al.
2023MNRAS.519.2940N 2193 T K A D S   X C F     44 19 ~ Quantifying the dust in
SN 2012aw and iPTF14hls with ORBYTS.
NICULESCU-DUVAZ M., BARLOW M.J., DUNN W., et al.
2023MNRAS.523.5315P 47           X         1 33 ~ Broad-emission-line dominated hydrogen-rich luminous supernovae. PESSI P.J., ANDERSON J.P., FOLATELLI G., et al.
2023ApJ...952L..23K 47           X         1 27 ~ SN 2023ixf in Messier 101: A Variable Red Supergiant as the Progenitor Candidate to a Type II Supernova. KILPATRICK C.D., FOLEY R.J., JACOBSON-GALAN W.V., et al.
2023MNRAS.524.2978B 47           X         1 19 ~ Time-varying Na I D absorption in ILRTs as a probe of circumstellar material. BYRNE R.A., FRASER M., CAI Y.-Z., et al.
2023ApJ...954..155T 47           X         1 15 ~ SN 2018gj: A Short Plateau Type II Supernova with Persistent Blueshifted Ha Emission. TEJA R.S., SINGH A., SAHU D.K., et al.
2023A&A...677A..28P viz 47           X         1 87 ~ A characterization of ASAS-SN core-collapse supernova environments with VLT+MUSE I. Sample selection, analysis of local environments, and correlations with light curve properties. PESSI T., PRIETO J.L., ANDERSON J.P., et al.
2023A&A...678A..43N 1260     A D S   X C       26 37 ~ Spectropolarimetry of Type II supernovae I. Sample, observational data, and interstellar polarization. NAGAO T., MATTILA S., KOTAK R., et al.
2023ApJ...959L..26V 93           X         2 11 ~ Early-time Ultraviolet and Optical Hubble Space Telescope Spectroscopy of the Type II Supernova 2022wsp. VASYLYEV S.S., VOGL C., YANG Y., et al.
2024ApJ...960...72S 20       D               1 94 ~ Search for Supernova Progenitor Stars with ZTF and LSST. STROTJOHANN N.L., OFEK E.O., GAL-YAM A., et al.
2024MNRAS.527.3106V 450           X C F     7 15 ~ Spectropolarimetry of the Type IIP supernova 2021yja: an unusually high continuum polarization during the photospheric phase. VASYLYEV S.S., YANG Y., PATRA K.C., et al.
2024A&A...681A..11N 1370       D S   X C F     25 15 ~ Spectropolarimetry of Type II supernovae II. Intrinsic supernova polarization and its relation to photometric and spectroscopic properties. NAGAO T., PATAT F., CIKOTA A., et al.
2024MNRAS.528.3092L 300           X C F     4 50 ~ A spectral data release for 104 type II supernovae from the Tsinghua Supernova group. LIN H., WANG X., ZHANG J., et al.
2024MNRAS.528.4209M 1200           X C F     22 33 ~ Intermediate-luminosity Type IIP SN 2021gmj: a low-energy explosion with signatures of circumstellar material. MURAI Y., TANAKA M., KAWABATA M., et al.
2024ApJ...963...93B 50           X         1 11 ~ Modeling of Radio Supernovae: Including the Effects of Inhomogeneities and Radiative Cooling. BJORNSSON C.-I.
2024ApJ...964L..27S 20       D               1 37 ~ A Bias-corrected Luminosity Function for Red Supergiant Supernova Progenitor Stars. STROTJOHANN N.L., OFEK E.O. and GAL-YAM A.
2024ApJ...964..172B 320       D S   X         6 97 ~ A Snapshot Survey of Nearby Supernovae with the Hubble Space Telescope. BAER-WAY R., DEGRAW A., ZHENG W., et al.
2024A&A...684A..16D 180     A     X         4 13 ~ The evolution of continuum polarization in type II supernovae as a diagnostic of ejecta morphology. DESSART L., HILLIER D.J. and LEONARD D.C.

goto View the references in ADSLimited to 100