SIMBAD references

2023A&A...677A.105D - Astronomy and Astrophysics, volume 677A, 105 (2023/9-1)

Using spectral modeling to break light-curve degeneracies of type II supernovae interacting with circumstellar material.

DESSART L. and JACOBSON-GALAN W.V.

Abstract (from CDS):

A large fraction of red-supergiant stars seem to be enshrouded by circumstellar material (CSM) at the time of explosion. Relative to explosions in a vacuum, this CSM causes both a luminosity boost at early times as well as the presence of symmetric emission lines with a narrow core and electron-scattering wings typical of type IIn supernovae (SNe). For this study, we performed radiation-hydrodynamics and radiative transfer calculations for a variety of CSM configurations (i.e., compact, extended, and detached) and documented the resulting ejecta and radiation properties. We find that models with a dense, compact, and massive CSM on the order of 0.5 M can match the early luminosity boost of type II-P SNe but fail to produce type IIn-like spectral signatures (also known as “flash features”). These only arise if the photon mean free path in the CSM is large enough (i.e., if the density is low enough) to allow for a radiative precursor through a long-lived (i.e., a day to a week), radially extended unshocked optically thick CSM. The greater radiative losses and kinetic-energy extraction in this case boost the luminosity even for modest CSM masses - this boost comes with a delay for a detached CSM. The inadequate assumption of high CSM density, in which the shock travels essentially adiabatically, overestimates the CSM mass and associated mass-loss rate. Our simulations also indicate that type IIn-like spectral signatures last as long as there is optically-thick unshocked CSM. Constraining the CSM structure therefore requires a combination of light curves and spectra, rather than photometry alone. We emphasize that for a given total energy, the radiation excess fostered by the presence of CSM comes at the expense of kinetic energy, as evidenced by the disappearance of the fastest ejecta material and the accumulation of mass in a dense shell. Both effects can be constrained from spectra well after the interaction phase.

Abstract Copyright: © The Authors 2023

Journal keyword(s): radiative transfer - supernovae: general - radiation: dynamics

Simbad objects: 10

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2023A&A...677A.105D and select 'bookmark this link' or equivalent in the popup menu