SIMBAD references

2022MNRAS.511.5797M - Mon. Not. R. Astron. Soc., 511, 5797-5816 (2022/April-3)

The cosmic evolution of binary black holes in young, globular, and nuclear star clusters: rates, masses, spins, and mixing fractions.

MAPELLI M., BOUFFANAIS Y., SANTOLIQUIDO F., ARCA SEDDA M. and ARTALE M.C.

Abstract (from CDS):

The growing population of binary black holes (BBHs) observed by gravitational wave (GW) detectors is a potential Rosetta stone for understanding their formation channels. Here, we use an upgraded version of our semi-analytical codes FASTCLUSTER and COSMO Rate to investigate the cosmic evolution of four different BBH populations: isolated BBHs and dynamically formed BBHs in nuclear star clusters (NSCs), globular clusters (GCs), and young star clusters (YSCs). With our approach, we can study different channels assuming the same stellar and binary input physics. We find that the merger rate density of BBHs in GCs and NSCs is barely affected by stellar metallicity (Z), while the rate of isolated BBHs changes wildly with Z. BBHs in YSCs behave in an intermediate way between isolated and GC/NSC BBHs. The local merger rate density of Nth-generation black holes (BHs), obtained by summing up hierarchical mergers in GCs, NSCs, and YSCs, ranges from ∼1 to ∼4 Gpc–3 yr–1 and is mostly sensitive to the spin parameter. We find that the mass function of primary BHs evolves with redshift in GCs and NSCs, becoming more top-heavy at higher z. In contrast, the primary BH mass function almost does not change with redshift in YSCs and in the field. This signature of the BH mass function has relevant implications for Einstein Telescope and Cosmic Explorer. Finally, our analysis suggests that multiple channels contribute to the BBH population of the second GW transient catalogue.

Abstract Copyright: © 2022 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society

Journal keyword(s): black hole physics - gravitational waves - stars: black holes - stars: kinematics and dynamics - galaxies: star clusters: general

Simbad objects: 4

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2022MNRAS.511.5797M and select 'bookmark this link' or equivalent in the popup menu