SIMBAD references

2020A&A...634A..76B - Astronomy and Astrophysics, volume 634A, 76-76 (2020/2-1)

Realistic collisional water transport during terrestrial planet formation. Self-consistent modeling by an N-body-SPH hybrid code.

BURGER C., BAZSO A. and SCHAFER C.M.

Abstract (from CDS):

Context. According to the latest theoretical and isotopic evidence, Earth's water content originates mainly from today's asteroid belt region, or at least from the same precursor material. This suggests that water was transported inwards to Earth, and to similar planets in their habitable zone, via (giant) collisions of planetary embryos and planetesimals during the chaotic final phase of planet formation. Aims. In current dynamical simulations water delivery to terrestrial planets is still studied almost exclusively by assuming oversimplified perfect merging, even though water and other volatiles are particularly prone to collisional transfer and loss. To close this gap we have developed a computational framework to model collisional water transport by direct combination of long-term N-body computations with dedicated 3D smooth particle hydrodynamics (SPH) collision simulations of differentiated, self-gravitating bodies for each event. Methods. Post-collision water inventories are traced self-consistently in the further dynamical evolution, in accretionary or erosive as well as hit-and-run encounters with two large surviving bodies, where besides collisional losses, water transfer between the encountering bodies has to be considered. This hybrid approach enables us for the first time to trace the full dynamical and collisional evolution of a system of approximately 200 bodies throughout the whole late-stage accretion phase (several hundred Myr). As a first application we choose a Solar System-like architecture with already formed giant planets on either circular or eccentric orbits and a debris disk spanning the whole terrestrial planet region (0.5-4au). Results. Including realistic collision treatment leads to considerably different results than simple perfect merging, with lower mass planets and water inventories reduced regularly by a factor of two or more. Due to a combination of collisional losses and a considerably lengthened accretion phase, final water content, especially with giant planets on circular orbits, is strongly reduced to more Earth-like values, and closer to results with eccentric giant planets. Water delivery to potentially habitable planets is dominated by very few decisive collisions, mostly with embryo-sized or larger objects and only rarely with smaller bodies, at least if embryos have formed throughout the whole disk initially. The high frequency of hit-and-run collisions and the differences to predominantly accretionary encounters, such as generally low water (and mass) transfer efficiencies, are a crucial part of water delivery, and of system-wide evolution in general.

Abstract Copyright: © ESO 2020

Journal keyword(s): planets and satellites: formation - methods: numerical - planets and satellites: terrestrial planets - hydrodynamics - planets and satellites: composition

Simbad objects: 0

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2020A&A...634A..76B and select 'bookmark this link' or equivalent in the popup menu