SIMBAD references

2014A&A...562A..48L - Astronomy and Astrophysics, volume 562A, 48-48 (2014/2-1)

The internal structure of asteroid (25143) Itokawa as revealed by detection of YORP spin-up.

LOWRY S.C., WEISSMAN P.R., DUDDY S.R., ROZITIS B., FITZSIMMONS A., GREEN S.F., HICKS M.D., SNODGRASS C., WOLTERS S.D., CHESLEY S.R., PITTICHOVA J. and VAN OERS P.

Abstract (from CDS):

Near-Earth asteroid (25143) Itokawa was visited by the Hayabusa spacecraft in 2005, resulting in a highly detailed shape and surface topography model. This model has led to several predictions for the expected radiative torques on this asteroid, suggesting that its spin rate should be decelerating. To detect changes in rotation rate that may be due to YORP-induced radiative torques, which in turn may be used to investigate the interior structure of the asteroid. Through an observational survey spanning 2001 to 2013 we obtained rotational lightcurve data at various times over the last five close Earth-approaches of the asteroid. We applied a polyhedron-shape-modelling technique to assess the spin-state of the asteroid and its long term evolution. We also applied a detailed thermophysical analysis to the shape model determined from the Hayabusa spacecraft. We have successfully measured an acceleration in Itokawa's spin rate of dω/dt=(3.54±0.38)x10–8rad/day2, equivalent to a decrease of its rotation period of ∼45ms/year. From the thermophysical analysis we find that the centre-of-mass for Itokawa must be shifted by ∼21m along the long-axis of the asteroid to reconcile the observed YORP strength with theory. This can be explained if Itokawa is composed of two separate bodies with very different bulk densities of 1750±110kg/m3 and 2850±500kg/m3, and was formed from the merger of two separate bodies, either in the aftermath of a catastrophic disruption of a larger differentiated body, or from the collapse of a binary system. We therefore demonstrate that an observational measurement of radiative torques, when combined with a detailed shape model, can provide insight into the interior structure of an asteroid. Futhermore, this is the first measurement of density inhomogeneity within an asteroidal body, that reveals significant internal structure variation. A specialised spacecraft is normally required for this.

Abstract Copyright:

Journal keyword(s): methods: observational - minor planets, asteroids: individual: glutag{Viz.asteroid "Itokawa"|(25143) Itokawa} - techniques: photometric - radiation mechanisms: thermal

VizieR on-line data: <Available at CDS (J/A+A/562/A48): table1.dat table2.dat>

Simbad objects: 0

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2014A&A...562A..48L and select 'bookmark this link' or equivalent in the popup menu