SIMBAD references

2009MNRAS.397L..64A - Mon. Not. R. Astron. Soc., 397, L64-L68 (2009/July-3)

Disc formation and the origin of clumpy galaxies at high redshift.

AGERTZ O., TEYSSIER R. and MOORE B.

Abstract (from CDS):

Observations of high-redshift galaxies have revealed a multitude of large clumpy rapidly star-forming galaxies. Their formation scenario and their link to present-day spirals are still unknown. In this Letter, we perform adaptive mesh refinement simulations of disc formation in a cosmological context that are unrivalled in terms of mass and spatial resolution. We find that the so-called `chain-galaxies' and `clump-clusters' are a natural outcome of early epochs of enhanced gas accretion from cold dense streams as well as tidally and ram-pressured stripped material from minor mergers and satellites. Through interaction with the hot halo gas, this freshly accreted cold gas settles into a large disc-like system, not necessarily aligned to an older stellar component, that undergoes fragmentation and subsequent star formation, forming large clumps in the mass range 107-109M. Galaxy formation is a complex process at this important epoch when most of the central baryons are being acquired through a range of different mechanisms - we highlight that a rapid mass loading epoch is required to fuel the fragmentation taking place in the massive arms in the outskirts of extended discs, an accretion mode that occurs naturally in the hierarchical assembly process at early epochs.

Abstract Copyright: © 2009 The Authors. Journal compilation © 2009 RAS

Journal keyword(s): galaxies: evolution - galaxies: formation - galaxies: haloes

Simbad objects: 1

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2009MNRAS.397L..64A and select 'bookmark this link' or equivalent in the popup menu