SN 2009md , the SIMBAD biblio

SN 2009md , the SIMBAD biblio (66 results) C.D.S. - SIMBAD4 rel 1.8 - 2024.05.06CEST20:54:16


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2011ApJ...736...76R 38           X         1 37 56 SN 2008in–Bridging the gap between normal and faint supernovae of type IIP. ROY R., KUMAR B., BENETTI S., et al.
2009CBET.2065....1N 38 T       O X         3 3 Supernova 2009md in NGC 3389. NAKANO S., ITAGAKI K., YUSA T., et al.
2009CBET.2068....1S 38 T       O X         3 3 Supernova 2009md in NGC 3389. SOLLERMAN J., ERGON M., INSERRA C., et al.
2009CBET.2070....1S 38 T       O X         7 2 Supernovae 2009lu, 2009md, 2009me, and 2009mf. STEELE T.N., KANDRASHOFF M.T. and FILIPPENKO A.V.
2011MNRAS.417.1417F 3457 T K A D S   X C F     87 34 80
SN 2009md: another faint supernova from a low-mass progenitor.
FRASER M., ERGON M., ELDRIDGE J.J., et al.
2012AJ....143...19V 40           X         1 23 64 Supernova 2008bk and its red supergiant progenitor. VAN DYK S.D., DAVIDGE T.J., ELIAS-ROSA N., et al.
2012AJ....143...27F 39           X         1 21 16 The SN 393-SNR RX J1713.7-3946 (G347.3-0.5) connection. FESEN R.A., KREMER R., PATNAUDE D., et al.
2012MNRAS.419.2054W 55       D     X         2 27 88 Circumstellar dust as a solution to the red supergiant supernova progenitor problem. WALMSWELL J.J. and ELDRIDGE J.J.
2012ApJ...745...70P 77             C       1 33 16 SN 2008jb: a "Lost" core-collapse supernova in a star-forming dwarf galaxy at ∼10 mpc. PRIETO J.L., LEE J.C., DRAKE A.J., et al.
2012A&A...538A.120L viz 15       D               1 5598 37 A unified supernova catalogue. LENNARZ D., ALTMANN D. and WIEBUSCH C.
2012MNRAS.424..855K 39           X         1 28 50 SN 2009kn – the twin of the type IIn supernova 1994W. KANKARE E., ERGON M., BUFANO F., et al.
2012ApJ...756..131V 40           X         1 30 61 The red supergiant progenitor of supernova 2012aw (PTF12bvh) in Messier 95. VAN DYK S.D., CENKO S.B., POZNANSKI D., et al.
2012A&A...544A..81H viz 15       D               1 7232 67 Supernovae and their host galaxies. I. The SDSS DR8 database and statistics. HAKOBYAN A.A., ADIBEKYAN V.Zh., ARAMYAN L.S., et al.
2012A&A...546A..28J 43           X         1 18 144 The progenitor mass of the type IIP supernova SN 2004et from late-time spectral modeling. JERKSTRAND A., FRANSSON C., MAGUIRE K., et al.
2012ApJ...759..107K viz 15       D               1 553 146 Core-collapse supernovae and host galaxy stellar populations. KELLY P.L. and KIRSHNER R.P.
2013MNRAS.433.1871B viz 40           X         1 32 76 Supernova 2012aw - a high-energy clone of archetypal Type IIP SN 1999em. BOSE S., KUMAR B., SUTARIA F., et al.
2013MNRAS.436..774E viz 16       D               1 250 249 The death of massive stars - II. Observational constraints on the progenitors of type Ibc supernovae. ELDRIDGE J.J., FRASER M., SMARTT S.J., et al.
2013A&A...558A.131G viz 56       D     X         2 60 160 Fundamental properties of core-collapse supernova and GRB progenitors: predicting the look of massive stars before death. GROH J.H., MEYNET G., GEORGY C., et al.
2013MNRAS.436.3224P 94       D         F     3 26 30 An emerging coherent picture of red supergiant supernova explosions. POZNANSKI D.
2014MNRAS.438..368T 355           X C F     7 18 46 SN 2009N: linking normal and subluminous Type II-P SNe. TAKATS K., PUMO M.L., ELIAS-ROSA N., et al.
2014ApJ...782...98B 607       D     X C       15 21 47 Distance determination to eight galaxies using expanding photosphere method. BOSE S. and KUMAR B.
2014MNRAS.439.2873S 253       D     X   F     6 40 125 Low luminosity Type II supernovae - II. Pointing towards moderate mass precursors. SPIRO S., PASTORELLO A., PUMO M.L., et al.
2014ApJ...787..139D 40           X         1 22 78 The Type IIP supernova 2012aw in M95: hydrodynamical modeling of the photospheric phase from accurate spectrophotometric monitoring. DALL'ORA M., BOTTICELLA M.T., PUMO M.L., et al.
2014MNRAS.441..671A 40           X         1 10 26 Analysis of blueshifted emission peaks in Type II supernovae. ANDERSON J.P., DESSART L., GUTIERREZ C.P., et al.
2014ApJ...795..142G viz 16       D               1 448 7 Defining photometric peculiar type Ia supernovae. GONZALEZ-GAITAN S., HSIAO E.Y., PIGNATA G., et al.
2014AJ....148..107R 134       D     X         4 104 44 Photospheric magnitude diagrams for Type II supernovae: a promising tool to compute distances. RODRIGUEZ O., CLOCCHIATTI A. and HAMUY M.
2015ApJ...799..215P viz 334       D     X C       8 53 38 A global model of the light curves and expansion velocities of Type II-Plateau supernovae. PEJCHA O. and PRIETO J.L.
2015MNRAS.447.3207M 1708 T K A D S   X C F     40 15 23 Whatever happened to the progenitors of supernovae 2008cn, 2009kr and 2009md? MAUND J.R., FRASER M., REILLY E., et al.
2015MNRAS.450.3137T viz 278           X C F     5 27 32 SN 2009ib: a Type II-P supernova with an unusually long plateau. TAKATS K., PIGNATA G., PUMO M.L., et al.
2016AJ....151...33G viz 16       D               1 168 81 UBVRIz light curves of 51 Type II supernovae. GALBANY L., HAMUY M., PHILLIPS M.M., et al.
2016ApJ...823..127N 57       D     X         2 25 27 The importance of 56Ni in shaping the light curves of type II supernovae. NAKAR E., POZNANSKI D. and KATZ B.
2016MNRAS.459.3939V viz 178       D       C F     5 210 225 The diversity of Type II supernova versus the similarity in their progenitors. VALENTI S., HOWELL D.A., STRITZINGER M.D., et al.
2017MNRAS.464.3013P 975   K A D     X C F     23 30 11 Radiation-hydrodynamical modelling of underluminous Type II plateau supernovae. PUMO M.L., ZAMPIERI L., SPIRO S., et al.
2017MNRAS.469.2202M 260       D S   X C       5 30 28 The resolved stellar populations around 12 Type IIP supernovae. MAUND J.R.
2018MNRAS.474.2116D 141       D     X         4 58 97 The initial masses of the red supergiant progenitors to Type II supernovae. DAVIES B. and BEASOR E.R.
2018MNRAS.475..277J 123           X         3 24 11 Emission line models for the lowest mass core-collapse supernovae - I. Case study of a 9 M one-dimensional neutrino-driven explosion. JERKSTRAND A., ERTL T., JANKA H.-T., et al.
2018MNRAS.475.1937T 82           X         2 27 11 SNe 2013K and 2013am: observed and physical properties of two slow, normal Type IIP events. TOMASELLA L., CAPPELLARO E., PUMO M.L., et al.
2018MNRAS.475.3959H 16       D               1 26 18 SN 2016X: a type II-P supernova with a signature of shock breakout from explosion of a massive red supergiant. HUANG F., WANG X.-F., HOSSEINZADEH G., et al.
2018ApJ...859...78N 41           X         1 22 10 The low-luminosity Type IIP Supernova 2016bkv with early-phase circumstellar interaction. NAKAOKA T., KAWABATA K.S., MAEDA K., et al.
2018A&A...613A..35K 16       D               3 171 55 Constraints on core-collapse supernova progenitors from explosion site integral field spectroscopy. KUNCARAYAKTI H., ANDERSON J.P., GALBANY L., et al.
2018MNRAS.473.3863L 552   K   D S   X   F     12 83 13 Progenitors of low-luminosity Type II-Plateau supernovae. LISAKOV S.M., DESSART L., HILLIER D.J., et al.
2018MNRAS.480.2475S 99       D       C       2 58 8 ASASSN-14dq: a fast-declining Type II-P supernova in a low-luminosity host galaxy. SINGH A., SRIVASTAV S., KUMAR B., et al.
2018MNRAS.481.2536K 41           X         1 20 14 The dusty progenitor star of the Type II supernova 2017eaw. KILPATRICK C.D. and FOLEY R.J.
2019MNRAS.483.5459R viz 59       D     X         2 66 5 Type II supernovae as distance indicators at near-IR wavelengths. RODRIGUEZ O., PIGNATA G., HAMUY M., et al.
2019A&A...622L...1O 20 6 A progenitor candidate for the type II-P supernova SN 2018aoq in NGC 4151. O'NEILL D., KOTAK R., FRASER M., et al.
2019ApJ...887....4D 100       D     X         3 73 ~ Carnegie Supernova Project-II: near-infrared spectroscopic diversity of Type II supernovae. DAVIS S., HSIAO E.Y., ASHALL C., et al.
2019MNRAS.490.4515S 393       D     X   F     9 24 ~ The 50-100 pc scale parent stellar populations of Type II supernovae and limitations of single star evolution models. SCHADY P., ELDRIDGE J.J., ANDERSON J., et al.
2020MNRAS.493.4945K 43           X         1 4 ~ On the red supergiant problem. KOCHANEK C.S.
2020MNRAS.494L..53F 17       D               1 19 ~ The uncertain masses of progenitors of core-collapse supernovae and direct-collapse black holes. FARRELL E.J., GROH J.H., MEYNET G., et al.
2020MNRAS.496.3725J 315   K   D     X C       7 18 ~ A low-luminosity core-collapse supernova very similar to SN 2005cs. JAGER Z., VINKO J., BIRO B.I., et al.
2020MNRAS.496.4517S 60       D     X         2 46 22 The γ-ray deposition histories of core-collapse supernovae. SHARON A. and KUSHNIR D.
2020A&A...641A.177M viz 17       D               1 288 ~ Stripped-envelope core-collapse supernova 56Ni masses. Persistently larger values than supernovae type II. MEZA N. and ANDERSON J.P.
2021A&A...645A...6Z 104       D         F     6 34 29 Effect of binary evolution on the inferred initial and final core masses of hydrogen-rich, Type II supernova progenitors. ZAPARTAS E., DE MINK S.E., JUSTHAM S., et al.
2021MNRAS.501.3122C 17       D               1 116 ~ The delay time distribution of supernovae from integral-field spectroscopy of nearby galaxies. CASTRILLO A., ASCASIBAR Y., GALBANY L., et al.
2021MNRAS.505.1742R 496       D     X   F     11 264 9 The iron yield of normal Type II supernovae. RODRIGUEZ O., MEZA N., PINEDA-GARCIA J., et al.
2021MNRAS.507.3726D 44           X         1 13 ~ The origins of low-luminosity supernovae: the case of SN 2016bkv. DECKERS M., GROH J.H., BOIAN I., et al.
2021A&A...655A..90Y viz 17       D               1 53 13 A low-energy explosion yields the underluminous Type IIP SN 2020cxd. YANG S., SOLLERMAN J., STROTJOHANN N.L., et al.
2022MNRAS.513.4556Z 18       D               1 41 1 SN 2019va: a Type IIP Supernova with Large Influence of Nickel-56 Decay on the Plateau-phase Light Curve. ZHANG X., WANG X., SAI H., et al.
2022MNRAS.515..897R 108       D       C       4 122 8 Luminosity distribution of Type II supernova progenitors. RODRIGUEZ O.
2022MNRAS.517.1483D 90               F     2 17 12 Explosion imminent: the appearance of red supergiants at the point of core-collapse. DAVIES B., PLEZ B. and PETRAULT M.
2023ApJ...949L..12A 19       D               1 56 3 Constraining High-energy Neutrino Emission from Supernovae with IceCube. ABBASI R., ACKERMANN M., ADAMS J., et al.
2023MNRAS.519..471V 93           X         2 41 8 The disappearances of six supernova progenitors. VAN DYK S.D., DE GRAW A., BAER-WAY R., et al.
2023ApJ...952L..23K 47           X         1 27 ~ SN 2023ixf in Messier 101: A Variable Red Supergiant as the Progenitor Candidate to a Type II Supernova. KILPATRICK C.D., FOLEY R.J., JACOBSON-GALAN W.V., et al.
2024ApJ...960...72S 50           X         1 94 ~ Search for Supernova Progenitor Stars with ZTF and LSST. STROTJOHANN N.L., OFEK E.O., GAL-YAM A., et al.
2024A&A...682A.123T viz 50           X         1 7 ~ Convective-core overshooting and the final fate of massive stars. TEMAJ D., SCHNEIDER F.R.N., LAPLACE E., et al.
2024ApJ...964L..27S 100             C       1 37 ~ A Bias-corrected Luminosity Function for Red Supergiant Supernova Progenitor Stars. STROTJOHANN N.L., OFEK E.O. and GAL-YAM A.

goto View the references in ADS