SIMBAD references

2016ApJ...829...63S - Astrophys. J., 829, 63-63 (2016/October-1)

Predictions of the atmospheric composition of GJ 1132b.

SCHAEFER L., WORDSWORTH R.D., BERTA-THOMPSON Z. and SASSELOV D.

Abstract (from CDS):

GJ 1132b is a nearby Earth-sized exoplanet transiting an M dwarf, and is among the most highly characterizable small exoplanets currently known. In this paper, we study the interaction of a magma ocean with a water-rich atmosphere on GJ 1132b and determine that it must have begun with more than 5 wt% initial water in order to still retain a water-based atmosphere. We also determine the amount of O2 that can build up in the atmosphere as a result of hydrogen dissociation and loss. We find that the magma ocean absorbs at most ∼10% of the O2 produced, whereas more than 90% is lost to space through hydrodynamic drag. The most common outcome for GJ 1132b from our simulations is a tenuous atmosphere dominated by O2, though, for very large initial water abundances, atmospheres with several thousands of bars of O2 are possible. A substantial steam envelope would indicate either the existence of an earlier H2 envelope or low XUV flux over the system's lifetime. A steam atmosphere would also imply the continued existence of a magma ocean on GJ 1132b. Further modeling is needed to study the evolution of CO2 or N2-rich atmospheres on GJ 1132b.

Abstract Copyright: © 2016. The American Astronomical Society. All rights reserved.

Journal keyword(s): planet-star interactions - planets and satellites: atmospheres - planets and satellites: composition - planets and satellites: individual: GJ 1132b - planets and satellites: individual: GJ 1132b

Simbad objects: 5

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2016ApJ...829...63S and select 'bookmark this link' or equivalent in the popup menu