SIMBAD references

2014MNRAS.439.2873S - Mon. Not. R. Astron. Soc., 439, 2873-2892 (2014/April-2)

Low luminosity Type II supernovae - II. Pointing towards moderate mass precursors.

SPIRO S., PASTORELLO A., PUMO M.L., ZAMPIERI L., TURATTO M., SMARTT S.J., BENETTI S., CAPPELLARO E., VALENTI S., AGNOLETTO I., ALTAVILLA G., AOKI T., BROCATO E., CORSINI E.M., DI CIANNO A., ELIAS-ROSA N., HAMUY M., ENYA K., FIASCHI M., FOLATELLI G., DESIDERA S., HARUTYUNYAN A., HOWELL D.A., KAWKA A., KOBAYASHI Y., LEIBUNDGUT B., MINEZAKI T., NAVASARDYAN H., NOMOTO K., MATTILA S., PIETRINFERNI A., PIGNATA G., RAIMONDO G., SALVO M., SCHMIDT B.P., SOLLERMAN J., SPYROMILIO J., TAUBENBERGER S., VALENTINI G., VENNES S. and YOSHII Y.

Abstract (from CDS):

We present new data for five underluminous Type II-plateau supernovae (SNe IIP), namely SN 1999gn, SN 2002gd, SN 2003Z, SN 2004eg and SN 2006ov. This new sample of low-luminosity SNe IIP (LL SNe IIP) is analysed together with similar objects studied in the past. All of them show a flat light-curve plateau lasting about 100 d, an underluminous late-time exponential tail, intrinsic colours that are unusually red, and spectra showing prominent and narrow P Cygni lines. A velocity of the ejected material below 103 km/s is inferred from measurements at the end of the plateau. The 56Ni masses ejected in the explosion are very small ( ≤ 10–2 M). We investigate the correlations among 56Ni mass, expansion velocity of the ejecta and absolute magnitude in the middle of the plateau, confirming the main findings of Hamuy, according to which events showing brighter plateau and larger expansion velocities are expected to produce more 56Ni. We propose that these faint objects represent the LL tail of a continuous distribution in parameters space of SNe IIP. The physical properties of the progenitors at the explosion are estimated through the hydrodynamical modelling of the observables for two representative events of this class, namely SN 2005cs and SN 2008in. We find that the majority of LL SNe IIP, and quite possibly all, originate in the core collapse of intermediate-mass stars, in the mass range 10–15 M.

Abstract Copyright: © 2014 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society (2014)

Journal keyword(s): supernovae: general - supernovae: individual: SN 1999gn - supernovae: individual: SN 2002gd - supernovae: individual: SN 2003Z - supernovae: individual: SN 2004eg - supernovae: individual: SN 2006ov

Simbad objects: 40

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2014MNRAS.439.2873S and select 'bookmark this link' or equivalent in the popup menu