SIMBAD references

2023MNRAS.524.4543S - Mon. Not. R. Astron. Soc., 524, 4543-4553 (2023/September-3)

Clockwise evolution in the hardness-intensity diagram of the black hole X-ray binary Swift J1910.2-0546.

SAIKIA P., RUSSELL D.M., PIRBHOY S.F., BAGLIO M.C., BRAMICH D.M., ALABARTA K., LEWIS F. and CHARLES P.

Abstract (from CDS):

We present a detailed study of optical data from the 2012 outburst of the candidate black hole X-ray binary Swift J1910.2-0546 using the Faulkes Telescope and Las Cumbres Observatory (LCO). We analyse the peculiar spectral state changes of Swift J1910.2-0546 in different energy bands, and characterize how the optical and UV emission correlates with the unusual spectral state evolution. Using various diagnostic tools like the optical/X-ray correlation and spectral energy distributions, we disentangle the different emission processes contributing towards the optical flux of the system. When Swift J1910.2-0546 transitions to the pure hard state, we find significant optical brightening of the source along with a dramatic change in the optical colour due to the onset of a jet during the spectral state transition. For the rest of the spectral states, the optical/UV emission is mostly dominated by an X-ray irradiated disc. From our high cadence optical study, we have discovered a putative modulation. Assuming that this modulation arises from a superhump, we suggest Swift J1910.2-0546 to have an orbital period of 2.25-2.47 h, which would make it the shortest orbital period black hole X-ray binary known to date. Finally, from the state transition luminosity of the source, we find that the distance to the source is likely to be ∼4.5-20.8 kpc, which is also supported by the comparative position of the source in the global optical/X-ray correlation of a large sample of black hole and neutron star X-ray binaries.

Abstract Copyright: © The Author(s) 2023. Published by Oxford University Press on behalf of Royal Astronomical Society

Journal keyword(s): accretion, accretion discs - black hole physics - ISM: jets and outflows - X-rays: individual: Swift J1910.2-0546

Simbad objects: 17

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2023MNRAS.524.4543S and select 'bookmark this link' or equivalent in the popup menu