SIMBAD references

2022MNRAS.510.3389U - Mon. Not. R. Astron. Soc., 510, 3389-3407 (2022/March-1)

ATLASGAL - evolutionary trends in high-mass star formation.

URQUHART J.S., WELLS M.R.A., PILLAI T., LEURINI S., GIANNETTI A., MOORE T.J.T., THOMPSON M.A., FIGURA C., COLOMBO D., YANG A.Y., KONIG C., WYROWSKI F., MENTEN K.M., RIGBY A.J., EDEN D.J. and RAGAN S.E.

Abstract (from CDS):

ATLASGAL is an 870-um dust survey of 420 deg2 the inner Galactic plane and has been used to identify ∼10 000 dense molecular clumps. Dedicated follow-up observations and complementary surveys are used to characterize the physical properties of these clumps, map their Galactic distribution, and investigate the evolutionary sequence for high-mass star formation. The analysis of the ATLASGAL data is ongoing: We present an up-to-date version of the catalogue. We have classified 5007 clumps into four evolutionary stages (quiescent, protostellar, young stellar objects and H II regions) and find similar numbers of clumps in each stage, suggesting a similar lifetime. The luminosity-to-mass (Lbol/Mfwhm) ratio curve shows a smooth distribution with no significant kinks or discontinuities when compared to the mean values for evolutionary stages indicating that the star formation process is continuous and that the observational stages do not represent fundamentally different stages or changes in the physical mechanisms involved. We compare the evolutionary sample with other star formation tracers (methanol and water masers, extended green objects and molecular outflows) and find that the association rates with these increases as a function of evolutionary stage, confirming that our classification is reliable. This also reveals a high association rate between quiescent sources and molecular outflows, revealing that outflows are the earliest indication that star formation has begun and that star formation is already ongoing in many of the clumps that are dark even at 70 um.

Abstract Copyright: © 2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society

Journal keyword(s): stars: early-type - stars: formation - ISM: evolution - Galaxy: kinematics and dynamics - submillimetre: ISM

VizieR on-line data: <Available at CDS (J/MNRAS/510/3389): table2.dat table3.dat table4.dat table6.dat refs.dat>

Simbad objects: 8770

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2022MNRAS.510.3389U and select 'bookmark this link' or equivalent in the popup menu