SIMBAD references

2021MNRAS.507.1979L - Mon. Not. R. Astron. Soc., 507, 1979-1998 (2021/October-3)

A scaling relationship for non-thermal radio emission from ordered magnetospheres: from the top of the main sequence to planets.

LETO P., TRIGILIO C., KRTICKA J., FOSSATI L., IGNACE R., SHULTZ M.E., BUEMI C.S., CERRIGONE L., UMANA G., INGALLINERA A., BORDIU C., PILLITTERI I., BUFANO F., OSKINOVA L.M., AGLIOZZO C., CAVALLARO F., RIGGI S., LORU S., TODT H., GIARRUSSO M., PHILLIPS N.M., ROBRADE J. and LEONE F.

Abstract (from CDS):

In this paper, we present the analysis of incoherent non-thermal radio emission from a sample of hot magnetic stars, ranging from early-B to early-A spectral type. Spanning a wide range of stellar parameters and wind properties, these stars display a commonality in their radio emission which presents new challenges to the wind scenario as originally conceived. It was thought that relativistic electrons, responsible for the radio emission, originate in current sheets formed, where the wind opens the magnetic field lines. However, the true mass-loss rates from the cooler stars are too small to explain the observed non-thermal broad-band radio spectra. Instead, we suggest the existence of a radiation belt located inside the inner magnetosphere, similar to that of Jupiter. Such a structure explains the overall indifference of the broad-band radio emissions on wind mass-loss rates. Further, correlating the radio luminosities from a larger sample of magnetic stars with their stellar parameters, the combined roles of rotation and magnetic properties have been empirically determined. Finally, our sample of early-type magnetic stars suggests a scaling relationship between the non-thermal radio luminosity and the electric voltage induced by the magnetosphere's co-rotation, which appears to hold for a broader range of stellar types with dipole-dominated magnetospheres (like the cases of the planet Jupiter and the ultracool dwarf stars and brown dwarfs). We conclude that well-ordered and stable rotating magnetospheres share a common physical mechanism for supporting the generation of non-thermal electrons.

Abstract Copyright: © 2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society

Journal keyword(s): magnetic reconnection - planets and satellites: magnetic fields - stars: early-type - stars: late-type - stars: magnetic field - radio continuum: stars

Simbad objects: 41

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2021MNRAS.507.1979L and select 'bookmark this link' or equivalent in the popup menu