SIMBAD references

2021AJ....161..180F - Astron. J., 161, 180-180 (2021/April-0)

Detecting atmospheric molecules of nontransiting temperate terrestrial exoplanets using high-resolution spectroscopy in the mid-infrared domain.

FUJII Y. and MATSUO T.

Abstract (from CDS):

Motivated by the development of high-dispersion spectrographs in the mid-infrared (MIR) range, we study their application to the atmospheric characterization of nearby nontransiting temperate terrestrial planets around M-type stars. We examine the detectability of CO2, H2O, N2O, and O3features in high-resolution planetary thermal emission spectra at 12-18 µm assuming an Earth-like profile and a simplified thermal structure. The molecular line width of such planets can be comparable to or broader than the Doppler shift due to the planetary orbital motion. Given the likely difficulty in knowing the high-resolution MIR spectrum of the host star with sufficient accuracy, we propose observing the target system at two quadrature phases and extracting the differential spectra as the planetary signal. In this case, the signals can be substantially suppressed compared with the case where the host star spectrum is perfectly known, as some parts of the spectral features do not remain in the differential spectra. Despite this self-subtraction, the CO2 and H2O features of nearby (<=5 pc) systems with mid-/late-M host stars would be feasible with a 6.5 m class cryogenic space telescope, and orbital inclination could also be constrained for some of them. For CO2 and N2O in a 1 bar Earth-like atmosphere, this method would be sensitive when the mixing ratio is 1-103 ppm. The detectability of molecules except O3 is not significantly improved when the spectral resolution is higher than R ≳10,000, although the constraint on the orbital inclination is improved. This study provides some benchmark cases useful for assessing the value of MIR high-resolution spectroscopy in terms of characterization of potentially habitable planets.

Abstract Copyright: © 2021. The American Astronomical Society. All rights reserved.

Journal keyword(s): Exoplanet astronomy - Exoplanet atmospheres - Exoplanet atmospheric composition - Exoplanets - Extrasolar rocky planets - Habitable planets

Simbad objects: 8

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2021AJ....161..180F and select 'bookmark this link' or equivalent in the popup menu