SIMBAD references

2021AJ....161..172D - Astron. J., 161, 172-172 (2021/April-0)

The solar neighborhood. XLVII. Comparing M-dwarf models with Hubble Space Telescope dynamical masses and spectroscopy.

DIETERICH S.B., SIMLER A., HENRY T.J. and JAO W.-C.

Abstract (from CDS):

We use HST/STIS optical spectroscopy of 10 M dwarfs in five closely separated binary systems to test models of M-dwarf structure and evolution. Individual dynamical masses ranging from 0.083 to 0.405 M for all stars are known from previous work. We first derive temperature, radius, luminosity, surface gravity, and metallicity by fitting the BT-Settl atmospheric models. We verify that our methodology agrees with empirical results from long-baseline optical interferometry for stars of similar spectral types. We then test whether or not evolutionary models can predict those quantities given the stars' known dynamical masses and the conditions of coevality and equal metallicity within each binary system. We apply this test to five different evolutionary model sets: the Dartmouth models, the MESA/MIST models, the models of Baraffe et al., the PARSEC models, and the YaPSI models. We find marginal agreement between evolutionary model predictions and observations, with few cases where the models respect the condition of coevality in a self-consistent manner. We discuss the pros and cons of each family of models and compare their predictive power.

Abstract Copyright: © 2021. The American Astronomical Society. All rights reserved.

Journal keyword(s): M dwarf stars - Astrometric binary stars - Stellar interiors - Stellar evolutionary models - Stellar atmospheres - Stellar masses

VizieR on-line data: <Available at CDS (J/AJ/161/172): table1.dat fig1.dat fig2.dat>

Simbad objects: 45

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2021AJ....161..172D and select 'bookmark this link' or equivalent in the popup menu