SIMBAD references

2017A&A...597A..28B - Astronomy and Astrophysics, volume 597A, 28-28 (2017/1-1)

How can young massive clusters reach their present-day sizes?

BANERJEE S. and KROUPA P.

Abstract (from CDS):

Context. The classic question of how young massive star clusters attain the shapes and sizes, as we find them today, is still a difficult one. Both observational and computational studies of star-forming massive molecular gas clouds suggest that massive cluster formation is primarily triggered along the small-scale (≤0.3pc) filamentary substructures within the clouds.
Aims. The present study investigates the possible ways in which a filament-like, compact, massive star cluster (effective radius 0.1-0.3pc) can expand more than 10 times, still remaining massive enough (≥104M) to become the young massive star cluster that we observe today.
Methods. To this end, model massive clusters (initially 104-105M) are evolved using Sverre Aarseth's state-of-the-art N-body code NBODY7. Apart from the accurate calculation of two-body relaxation of the constituent stars, these evolutionary models take into account stellar-evolutionary mass loss and dynamical energy injection due to massive, tight primordial binaries and stellar-remnant black holes and neutron stars. These calculations also include a solar-neighbourhood-like external tidal field. All the computed clusters expand with time, and their sizes (effective radii) are compared with those observed for young massive clusters (≤100Myr) in the Milky Way and other nearby galaxies.
Results. In this study, it is found that beginning from the above compact sizes, a star cluster cannot expand on its own, i.e., due to two-body relaxation, stellar mass loss, and dynamical heating by primordial binaries and compact stars up to the observed sizes of young massive clusters; star clusters always remain much more compact than the observed ones.
Conclusions. This calls for additional mechanisms that boost the expansion of a massive cluster after its assembly. Using further N-body calculations, it is shown that a substantial residual gas expulsion with ∼30% star formation efficiency can indeed swell the newborn embedded cluster adequately. The limitations of the present calculations and their consequences are discussed.

Abstract Copyright: © ESO, 2016

Journal keyword(s): galaxies: star clusters: general - methods: numerical - star: formation - stars: kinematics and dynamics

CDS comments: Table 1 DBS2003 is here [DBS2003] 179 in Simbad. NGC 1705-1 not identified. Some W99-NN not in SIMBAD.

Simbad objects: 125

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2017A&A...597A..28B and select 'bookmark this link' or equivalent in the popup menu