SIMBAD references

2012ApJ...744..131C - Astrophys. J., 744, 131 (2012/January-2)

Organic chemistry of low-mass star-forming cores. I. 7 mm spectroscopy of Chamaeleon MMS1.

CORDINER M.A., CHARNLEY S.B., WIRSTROEM E.S. and SMITH R.G.

Abstract (from CDS):

Observations are presented of emission lines from organic molecules at frequencies 32-50 GHz in the vicinity of Chamaeleon MMS1. This chemically rich dense cloud core harbors an extremely young, very low luminosity protostellar object and is a candidate first hydrostatic core. Column densities are derived and emission maps are presented for species including polyynes, cyanopolyynes, sulphuretted carbon chains, and methanol. The polyyne emission peak lies about 5000 AU from the protostar, whereas methanol peaks about 15,000 AU away. Averaged over the telescope beam, the molecular hydrogen number density is calculated to be 106/cm3 and the gas kinetic temperature is in the range 5-7 K. The abundances of long carbon chains are very large and are indicative of a non-equilibrium carbon chemistry; C6 H and HC7N column densities are 5.9+2.9–1.3x1011/cm2 and 3.3+8.0–1.5x 1012/cm2, respectively, which are similar to the values found in the most carbon-chain-rich protostars and prestellar cores known, and are unusually large for star-forming gas. Column density upper limits were obtained for the carbon-chain anions C4H and C6H, with anion-to-neutral ratios [C4H]/[C4H] < 0.02% and [C6H]/[C6H] < 10%, consistent with previous observations in interstellar clouds and low-mass protostars. Deuterated HC3 N and c-C3H2 were detected. The [DC3N]/[HC3N] ratio of approximately 4% is consistent with the value typically found in cold interstellar gas.

Abstract Copyright:

Journal keyword(s): astrochemistry - ISM: abundances - radio lines: ISM - radio lines: stars - stars: formation

Simbad objects: 21

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2012ApJ...744..131C and select 'bookmark this link' or equivalent in the popup menu