SN 2016bse , the SIMBAD biblio

SN 2016bse , the SIMBAD biblio (112 results) C.D.S. - SIMBAD4 rel 1.8 - 2024.05.21CEST02:10:25


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2015ATel.6898....1L 119 T         X         2 2 3 Spectroscopic Classification of
CSS141118:092034+504148 as a Type II-P Supernova.
LI W., WANG X. and ZHANG T.
2017PASJ...69....9Y 57       D     X         2 35 14 J-GEM follow-up observations of the gravitational wave source GW 151226. YOSHIDA M., UTSUMI Y., TOMINAGA N., et al.
2017Natur.551..210A 12 9 115 Energetic eruptions leading to a peculiar hydrogen-rich explosion of a massive star. ARCAVI I., HOWELL D.A., KASEN D., et al.
2018ApJ...854L..18Y 1508 T K A S   X C       34 2 5 Fermi Large Area Telescope detection of gamma-ray emission from the direction of supernova
iPTF14hls.
YUAN Q., LIAO N.-H., XIN Y.-L., et al.
2018A&A...610L..10D 811 T   A     X C       18 4 18 A magnetar model for the hydrogen-rich super-luminous supernova
iPTF14hls.
DESSART L.
2018MNRAS.475.1198S 485 T   A     X         11 3 25 Explaining
iPTF14hls as a common-envelope jets supernova.
SOKER N. and GILKIS A.
2018MNRAS.477...74A 1551 T K A     X C       36 18 69 Strong late-time circumstellar interaction in the peculiar supernova
iPTF14hls.
ANDREWS J.E. and SMITH N.
2018MNRAS.478.2541F 41           X         1 8 ~ An unusual transient in the extremely metal-poor Galaxy SDSS J094332.35+332657.6 (Leoncino Dwarf). FILHO M.E. and SANCHEZ ALMEIDA J.
2018ApJ...863..105W 3163 T K A     X C       75 2 21 Models for the unusual Supernova
iPTF14hls.
WOOSLEY S.E.
2018ApJ...865...95W 2043 T K A     X C       48 5 10 A fallback accretion model for the unusual Type II-P supernova
iPTF14hls.
WANG L.J., WANG X.F., WANG S.Q., et al.
2018ApJ...867..130F 43           X         1 5 12 Mechanical feedback from black hole accretion as an energy source of core-collapse supernova explosions. FENG E.-H., SHEN R.-F. and LIN W.-P.
2018ApJ...868L..24L 41           X         1 7 4 Photospheric radius evolution of homologous explosions. LIU L.-D., ZHANG B., WANG L.-J., et al.
2019A&A...621A..30S 2827 T K A     X C       66 7 9 Late-time observations of the extraordinary Type II supernova
iPTF14hls.
SOLLERMAN J., TADDIA F., ARCAVI I., et al.
2019MNRAS.482.4233G 68     A     X         2 6 10 Common envelope jets supernova (CEJSN) impostors resulting from a neutron star companion. GILKIS A., SOKER N. and KASHI A.
2019A&A...622A..70D 84             C       1 11 5 Supernovae from blue supergiant progenitors: What a mess! DESSART L. and HILLIER D.J.
2019A&A...621A.141D 127           X         3 16 33 Simulations of light curves and spectra for superluminous Type Ic supernovae powered by magnetars. DESSART L.
2019MNRAS.484.4972S 196       D     X         5 5 64 Diversity of common envelope jets supernovae and the fast transient AT2018cow. SOKER N., GRICHENER A. and GILKIS A.
2019ApJ...874...44Y 293           X C       6 17 5 Rapid "turn-on" of type-1 AGN in a quiescent early-type galaxy SDSS1115+0544. YAN L., WANG T., JIANG N., et al.
2019MNRAS.485L..83Q 82     A     X         2 4 62 Black hole accretion discs and luminous transients in failed supernovae from non-rotating supergiants. QUATAERT E., LECOANET D. and COUGHLIN E.R.
2019ApJ...876L..29V 653     A     X         16 8 11 Massive stellar mergers as precursors of hydrogen-rich pulsational pair instability supernovae. VIGNA-GOMEZ A., JUSTHAM S., MANDEL I., et al.
2019RAA....19...63W 42           X         1 28 3 The Energy Sources of Superluminous Supernovae. WANG S.-Q., WANG L.-J. and DAI Z.-G.
2019MNRAS.487.4057K 42           X         1 15 ~ PS1-13cbe: the rapid transition of a Seyfert 2 to a Seyfert 1. KATEBI R., CHORNOCK R., BERGER E., et al.
2019ApJ...881...87G viz 294           X C       6 20 27 SN 2016iet: the pulsational or pair instability explosion of a low-metallicity massive CO core embedded in a dense hydrogen-poor circumstellar medium. GOMEZ S., BERGER E., NICHOLL M., et al.
2019MNRAS.488.3783B 125           X         3 15 ~ The Type II superluminous SN 2008es at late times: near-infrared excess and circumstellar interaction. BHIROMBHAKDI K., CHORNOCK R., MILLER A.A., et al.
2019MNRAS.488.5854G 2006 T   A D     X         48 2 ~ The strongly interacting binary scenarios of the enigmatic supernova
iPTF14hls.
GOFMAN R.A. and SOKER N.
2019ApJ...882...36M 57           X         1 10 157 Pulsational pair-instability supernovae in very close binaries. MARCHANT P., RENZO M., FARMER R., et al.
2019ApJ...882...68S 42           X         1 27 ~ Observational signature of circumstellar interaction and 56Ni-mixing in the Type II Supernova 2016gfy. SINGH A., KUMAR B., MORIYA T.J., et al.
2019ApJ...882...70M 502           X C       11 9 ~ HSC16aayt: a slowly evolving interacting transient rising for more than 100 days. MORIYA T.J., TANAKA M., MOROKUMA T., et al.
2019ApJ...885..110Y 209           X C       4 14 ~ An unusual mid-infrared flare in a Type 2 AGN: an obscured turning-on AGN or tidal disruption event? YANG Q., SHEN Y., LIU X., et al.
2019MNRAS.490..312Y 192     A     X         5 1 ~ Optical transient from an explosion close to the stellar surface. YALINEWICH A. and MATZNER C.D.
2019ApJ...887...72L 46           X         1 17 76 Pulsational pair-instability supernovae. I. Pre-collapse evolution and pulsational mass ejection. LEUNG S.-C., NOMOTO K. and BLINNIKOV S.
2019MNRAS.490.1605D 42           X         1 25 ~ SN 2015an: a normal luminosity type II supernova with low expansion velocity at early phases. DASTIDAR R., MISRA K., VALENTI S., et al.
2019ApJ...887..249S 85           X         2 15 25 Supernova ejecta interacting with a circumstellar disk. I. Two-dimensional radiation-hydrodynamic simulations. SUZUKI A., MORIYA T.J. and TAKIWAKI T.
2020MNRAS.492.2208C 43           X         1 39 ~ LSQ13ddu: a rapidly evolving stripped-envelope supernova with early circumstellar interaction signatures. CLARK P., MAGUIRE K., INSERRA C., et al.
2020MNRAS.492.3013K 1260     A S   X C       28 4 ~ Emission peaks in the light curve of core collapse supernovae by late jets. KAPLAN N. and SOKER N.
2020MNRAS.491.1384M 4027 T   A S   X C       92 4 ~
iPTF14hls as a variable hyper-wind from a very massive star.
MORIYA T.J., MAZZALI P.A. and PIAN E.
2020ApJ...889...75L 43           X         1 6 ~ Pulsational Pair-instability supernovae. II. Neutrino signals from pulsations and their detection by terrestrial neutrino detectors. LEUNG S.-C., BLINNIKOV S., ISHIDOSHIRO K., et al.
2020MNRAS.493.1761R viz 43           X         1 34 9 SN 2016gsd: an unusually luminous and linear Type II supernova with high velocities. REYNOLDS T.M., FRASER M., MATTILA S., et al.
2020ApJ...891...98L 43           X         1 16 ~ The energy sources of double-peaked superluminous supernova PS1-12cil and luminous supernova SN 2012aa. LI L., WANG S.-Q., LIU L.-D., et al.
2020ApJ...893...20S 85           X         2 6 ~ Efficiently jet-powered radiation in intermediate-luminosity optical transients. SOKER N.
2020ApJ...893...99C 43           X         1 2 ~ Three-dimensional simulations of magnetar-powered superluminous supernovae. CHEN K.-J., WOOSLEY S.E. and WHALEN D.J.
2020ApJ...896L..33X 43           X         1 27 ~ A serendipitous discovery of GeV gamma-ray emission from Supernova 2004dj in a survey of nearby star-forming galaxies with Fermi-LAT. XI S.-Q., LIU R.-Y., WANG X.-Y., et al.
2020MNRAS.496...95G 128           X         3 13 ~ DES16C3cje: A low-luminosity, long-lived supernova. GUTIERREZ C.P., SULLIVAN M., MARTINEZ L., et al.
2020ApJ...897..156U 1898 T   A S   X C       42 2 ~ A wind-driven model: application to peculiar transients AT2018cow and
iPTF14hls.
UNO K. and MAEDA K.
2020ApJ...900...11W viz 170           X         4 22 12 Late-time circumstellar interaction of SN 2017eaw in NGC 6946. WEIL K.E., FESEN R.A., PATNAUDE D.J., et al.
2020ApJ...900...83W 43           X         1 15 ~ Exploring the energy sources powering the light curve of the Type Ibn supernova PS15dpn and the mass-loss history of the SN progenitor. WANG S.-Q. and LI L.
2020MNRAS.497.5395N 111     A     X         3 4 ~ Early light curves of Type II supernovae interacting with a circumstellar disc. NAGAO T., MAEDA K. and OUCHI R.
2020A&A...640A..56R 48           X         1 9 51 Predictions for the hydrogen-free ejecta of pulsational pair-instability supernovae. RENZO M., FARMER R., JUSTHAM S., et al.
2020NatAs...4..893N 86             C       1 17 30 An extremely energetic supernova from a very massive star in a dense medium. NICHOLL M., BLANCHARD P.K., BERGER E., et al.
2020ApJ...902L..36F 56           X         1 10 133 Constraints from gravitational-wave detections of binary black hole mergers on the 12C(α, γ)16O rate. FARMER R., RENZO M., DE MINK S.E., et al.
2020A&A...642A.214K 170           X C       3 21 15 Supernova explosions interacting with aspherical circumstellar material: implications for light curves, spectral line profiles, and polarization. KURFURST P., PEJCHA O. and KRTICKA J.
2020MNRAS.499.3544S 43           X         1 34 12 High-resolution spectroscopy of SN 2017hcc and its blueshifted line profiles from post-shock dust formation. SMITH N. and ANDREWS J.E.
2020ApJ...904....4F 88             C       1 7 26 High-energy neutrinos and gamma rays from nonrelativistic shock-powered transients. FANG K., METZGER B.D., VURM I., et al.
2020A&A...643A..79S 43           X         1 24 20 Two stripped envelope supernovae with circumstellar interaction. But only one really shows it. SOLLERMAN J., FRANSSON C., BARBARINO C., et al.
2021ApJS..252...32J viz 44           X         1 157 26 Mid-infrared outbursts in nearby galaxies (MIRONG). I. Sample selection and characterization. JIANG N., WANG T., DOU L., et al.
2021MNRAS.501.4053A 44           X         1 6 ~ Simulating the inflation of bubbles by late jets in core collapse supernova ejecta. AKASHI M. and SOKER N.
2021MNRAS.501.4514C 66           X         1 4 89 Formation of GW190521 from stellar evolution: the impact of the hydrogen-rich envelope, dredge-up, and 12C(α, γ)16O rate on the pair-instability black hole mass gap. COSTA G., BRESSAN A., MAPELLI M., et al.
2021A&A...646A..22Y viz 3030 T K A     X C       68 5 ~ Is supernova SN 2020faa an
iPTF14hls look-alike?
YANG S., SOLLERMAN J., CHEN T.-W., et al.
2021ApJ...908..249M 261           X C       5 8 ~ Constraints on the rate of supernovae lasting for more than a year from Subaru/Hyper Suprime-Cam. MORIYA T.J., JIANG J.-A., YASUDA N., et al.
2021MNRAS.503.5569V 44           X         1 2 ~ Tidal dissipation impact on the eccentric onset of common envelope phases in massive binary star systems. VICK M., MacLEOD M., LAI D., et al.
2021ApJ...911..142L 44           X         1 9 ~ Magnetar-driven shock breakout revisited and implications for double-peaked Type I superluminous supernovae. LIU L.-D., GAO H., WANG X.-F., et al.
2021MNRAS.504.5967S 44           X         1 3 ~ Double common envelope jets supernovae (CEJSNe) by triple-star systems. SOKER N.
2021MNRAS.505..663R 46           X         1 17 41 Chemically homogeneous evolution: a rapid population synthesis approach. RILEY J., MANDEL I., MARCHANT P., et al.
2021MNRAS.505.1413P 871     A D     X         21 66 ~ Search for gamma rays from SNe with a variable-size sliding-time-window analysis of the Fermi-LAT data. PROKHOROV D.A., MORAGHAN A. and VINK J.
2021MNRAS.505.1742R 44           X         1 264 9 The iron yield of normal Type II supernovae. RODRIGUEZ O., MEZA N., PINEDA-GARCIA J., et al.
2021MNRAS.505.3950G 44           X         1 37 ~ Understanding the extreme luminosity of DES14X2fna. GRAYLING M., GUTIERREZ C.P., SULLIVAN M., et al.
2018ATel12014....1P 41           X         1 5 ~ ATLAS and Liverpool Telescope observations and classification of the peculiar type II SN 2018anu. PRENTICE S.J., MAGUIRE K., SMARTT S.J., et al.
2021ApJ...915...80L 88           X         2 12 19 Fast blue optical transients due to circumstellar interaction and the mysterious supernova SN 2018gep. LEUNG S.-C., FULLER J. and NOMOTO K.
2021ApJS..255...29S viz 17       D               1 893 63 The Palomar Transient Factory core-collapse supernova host-galaxy sample. I. Host-galaxy distribution functions and environment dependence of core-collapse supernovae. SCHULZE S., YARON O., SOLLERMAN J., et al.
2018ATel12135....1A 123 T         X         2 2 ~ SN 2018aad Might be Another
iPTF14hls at z=0.025.
ARCAVI I., HIRAMATSU D., JHA S.W., et al.
2021MNRAS.506.2445S 44           X         1 5 ~ Binary neutron star merger in common envelope jets supernovae. SOKER N.
2021MNRAS.507.1651G 53           X         1 3 27 Common envelope jets supernovae with a black hole companion as possible high-energy neutrino sources. GRICHENER A. and SOKER N.
2021MNRAS.508...74M 261           X C       5 8 2 Properties of Thorne-Zytkow object explosions. MORIYA T.J. and BLINNIKOV S.I.
2021MNRAS.508.2386S 44           X         1 6 ~ Simulating highly eccentric common envelope jet supernova impostors. SCHREIER R., HILLEL S., SHIBER S., et al.
2021ApJ...920....5L 44           X         1 4 ~ Neutrino-dominated accretion flows: a second nucleosynthesis factory in core-collapse supernovae and regulating the iron markets in galaxies. LIU T., QI Y.-Q., CAI Z.-Y., et al.
2021ApJ...922...61G 44           X         1 2 ~ Simulating the negative jet feedback mechanism in common envelope jet supernovae. GRICHENER A., COHEN C. and SOKER N.
2022MNRAS.509.2836S 45           X         1 3 ~ Spin-orbit misalignment from triple-star common envelope evolution. SOKER N.
2021ApJ...923...41L 44           X         1 17 16 Wave-driven mass loss of stripped envelope massive stars: progenitor-dependence, mass ejection, and supernovae. LEUNG S.-C., WU S. and FULLER J.
2022MNRAS.509.5669R 45           X         1 1 ~ The propagation of strong shocks into planetary and stellar atmospheres with graded density profiles. REMOROV A. and YALINEWICH A.
2022ApJ...924...15J viz 91           X         2 30 53 Final moments. I. Precursor emission, envelope inflation, and enhanced mass loss preceding the luminous Type II Supernova 2020tlf. JACOBSON-GALAN W.V., DESSART L., JONES D.O., et al.
2022MNRAS.511.3321C 45           X         1 8 5 The first days of Type II-P core collapse supernovae in the gamma-ray range. CRISTOFARI P., MARCOWITH A., RENAUD M., et al.
2022ApJ...926L..11S 296     A     X         7 51 2 Optical Rebrightening of Extragalactic Transients from the Zwicky Transient Facility. SORAISAM M., MATHESON T., LEE C.-H., et al.
2022ApJ...926..125P viz 46           X         1 12 20 Circumstellar Interaction Powers the Light Curves of Luminous Rapidly Evolving Optical Transients. PELLEGRINO C., HOWELL D.A., VINKO J., et al.
2022MNRAS.512.4484F 45           X         1 24 4 Close, bright, and boxy: the superluminous SN 2018hti. FIORE A., BENETTI S., NICHOLL M., et al.
2022MNRAS.512.4503R 63           X         1 1 18 Pulsational pair-instability supernovae: gravitational collapse, black hole formation, and beyond. RAHMAN N., JANKA H.-T., STOCKINGER G., et al.
2022ApJ...927..148C 45           X         1 3 ~ A Physical Model of Delayed Rebrightenings in Shock-interacting Supernovae without Narrow-line Emission. COUGHLIN E.R. and ZRAKE J.
2022MNRAS.513.5666B 45           X         1 19 16 Progenitor, environment, and modelling of the interacting transient AT 2016jbu (Gaia16cfr). BRENNAN S.J., FRASER M., JOHANSSON J., et al.
2022MNRAS.514.3212H 93           X         2 5 18 Three-dimensional simulations of the jet feedback mechanism in common envelope jets supernovae. HILLEL S., SCHREIER R. and SOKER N.
2022RAA....22e5010S 46           X         1 14 25 A Common Envelope Jets Supernova (CEJSN) Impostor Scenario for Fast Blue Optical Transients. SOKER N.
2022ApJ...933..102W 2356 T   A     X C       51 4 3
iPTF14hls in the Circumstellar Medium Interaction Model: A Promising Candidate for a Pulsational Pair-instability Supernova.
WANG L.-J., LIU L.-D., LIN W.-L., et al.
2022MNRAS.515..110K 582           X C F     11 24 3 Multiple giant eruptions and X-ray emission in the recoiling AGN/LBV candidate SDSS1133. KOKUBO M.
2022MNRAS.515..897R 45           X         1 122 8 Luminosity distribution of Type II supernova progenitors. RODRIGUEZ O.
2022MNRAS.516..492B 45           X         1 11 5 Core-collapse supernovae in dense environments - particle acceleration and non-thermal emission. BROSE R., SUSHCH I. and MACKEY J.
2022MNRAS.516.1846H 90           X         2 3 ~ Feeding post-core collapse supernova explosion jets with an inflated main sequence companion. HOBER O., BEAR E. and SOKER N.
2022MNRAS.516.4942S 45           X         1 18 3 Pre-explosion, explosion, and post-explosion jets in supernova SN 2019zrk. SOKER N.
2022ApJ...939..105B 152       D S   X         3 121 10 Seven Years of Coordinated Chandra-NuSTAR Observations of SN 2014C Unfold the Extreme Mass-loss History of Its Stellar Progenitor. BRETHAUER D., MARGUTTI R., MILISAVLJEVIC D., et al.
2022RAA....22l2003S 403       S   X         8 54 19 The Role of Jets in Exploding Supernovae and in Shaping their Remnants. SOKER N.
2023MNRAS.520.4182S 48           X         1 5 6 Simulating the deposition of angular momentum by jets in common envelope evolution. SCHREIER R., HILLEL S. and SOKER N.
2023ApJ...945...30A 47           X         1 13 ~ VERITAS and Fermi-LAT Constraints on the Gamma-Ray Emission from Superluminous Supernovae SN2015bn and SN2017egm. ACHARYYA A., ADAMS C.B., BANGALE P., et al.
2023MNRAS.522..885C 47           X         1 5 1 Terminating a common envelope jets supernova impostor event with a super-Eddington blue supergiant. COHEN T. and SOKER N.
2023ApJ...949...23Z 47           X         1 17 2 SN 2017egm: A Helium-rich Superluminous Supernova with Multiple Bumps in the Light Curves. ZHU J., JIANG N., DONG S., et al.
2023A&A...673A.127S 2006           X C F     41 11 ~ Hidden shock powering the peak of SN 2020faa. SALMASO I., CAPPELLARO E., TARTAGLIA L., et al.
2023MNRAS.519.2940N 2612 T K A D S   X C F     53 19 ~ Quantifying the dust in SN 2012aw and
iPTF14hls with ORBYTS.
NICULESCU-DUVAZ M., BARLOW M.J., DUNN W., et al.
2023AJ....166...13L 65       D     X         2 11 ~ Automated SpectroPhotometric Image REDuction (ASPIRED). LAM M.C., SMITH R.J., ARCAVI I., et al.
2023MNRAS.523.6041G 47           X         1 7 ~ Common envelope jets supernova with thermonuclear outburst progenitor for the enigmatic supernova remnant W49B. GRICHENER A. and SOKER N.
2023NatAs...7..779L 280           X         6 16 ~ A superluminous supernova lightened by collisions with pulsational pair-instability shells. LIN W., WANG X., YAN L., et al.
2023A&A...675A..33D 47           X         1 20 ~ The morphing of decay powered to interaction powered Type II supernova ejecta at nebular times. DESSART L., GUTIERREZ C.P., KUNCARAYAKTI H., et al.
2023ApJ...955...39C 47           X         1 2 ~ Multidimensional Radiation Hydrodynamics Simulations of Pulsational Pair-instability Supernovae. CHEN K.-J., WHALEN D.J., WOOSLEY S.E., et al.
2023ApJ...956...46S 93           X         2 15 ~ High-resolution Spectroscopy of SN 2023ixf's First Week: Engulfing the Asymmetric Circumstellar Material. SMITH N., PEARSON J., SAND D.J., et al.
2023MNRAS.526.4130H 93           X         2 11 ~ Pulsational pair-instability supernovae in gravitational-wave and electromagnetic transients. HENDRIKS D.D., VAN SON L.A.C., RENZO M., et al.
2024A&A...682A..58D 50           X         1 4 ~ Light curves and spectra for theoretical models of high-velocity red-giant star collisions. DESSART L., RYU T., AMARO SEOANE P., et al.
2024Natur.625..253C 50           X         1 33 ~ A 12.4-day periodicity in a close binary system after a supernova. CHEN P., GAL-YAM A., SOLLERMAN J., et al.

goto View the references in ADSLimited to 100