SN 2013ge , the SIMBAD biblio

SN 2013ge , the SIMBAD biblio (53 results) C.D.S. - SIMBAD4 rel 1.8 - 2024.04.19CEST07:00:06


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2014ATel.6089....1P 39           X         1 6 ~ PESSTO spectroscopic classification of optical transients. POLSHAW J., BENITEZ S., NICHOLL M., et al.
2016ApJ...820...75P 120           X C       2 47 24 Line identifications of Type I supernovae: on the detection of Si II for these hydrogen-poor events. PARRENT J.T., MILISAVLJEVIC D., SODERBERG A.M., et al.
2016ApJ...821...57D viz 6905 T K A D S   X C F     169 43 70 The double-peaked
SN 2013ge: a Type Ib/c SN with an asymmetric mass ejection or an extended progenitor envelope.
DROUT M.R., MILISAVLJEVIC D., PARRENT J., et al.
2016MNRAS.457.1107H 96       D         F     5 126 2 Progenitor constraints for core-collapse supernovae from Chandra X-ray observations. HEIKKILA T., TSYGANKOV S., MATTILA S., et al.
2016MNRAS.458.2973P 17       D               5 90 117 The bolometric light curves and physical parameters of stripped-envelope supernovae. PRENTICE S.J., MAZZALI P.A., PIAN E., et al.
2016A&A...592A..89T 41           X         1 21 31 iPTF15dtg: a double-peaked Type Ic supernova from a massive progenitor. TADDIA F., FREMLING C., SOLLERMAN J., et al.
2017ApJ...835..140M 16       D               1 194 134 Ejection of the massive hydrogen-rich envelope timed with the collapse of the stripped SN 2014C. MARGUTTI R., KAMBLE A., MILISAVLJEVIC D., et al.
2017ApJ...846...50M 219       D     X C       5 40 15 IPTF15eqv: multiwavelength expose of a peculiar calcium-rich transient. MILISAVLJEVIC D., PATNAUDE D.J., RAYMOND J.C., et al.
2017MNRAS.471.2463B 41           X         1 24 5 LSQ14efd: observations of the cooling of a shock break-out event in a type Ic Supernova. BARBARINO C., BOTTICELLA M.T., DALL'ORA M., et al.
2018ApJ...856..146A 41           X         1 9 5 Aspherical supernovae: effects on Early light curves. AFSARIARDCHI N. and MATZNER C.D.
2018MNRAS.475.3152K 42           X         1 7 8 Models of bright nickel-free supernovae from stripped massive stars with circumstellar shells. KLEISER I.K.W., KASEN D. and DUFFELL P.C.
2018MNRAS.478.4162P 41           X         1 26 20 SN 2016coi/ASASSN-16fp: an example of residual helium in a typeIc supernova? PRENTICE S.J., ASHALL C., MAZZALI P.A., et al.
2018ApJ...863..109Z viz 41           X         1 11 3 Optical observations of the young Type Ic supernova SN 2014L in M99. ZHANG J., WANG X., VINKO J., et al.
2018MNRAS.473.3776K 82           X         2 20 8 ASASSN-16fp (SN 2016coi): a transitional supernova between Type Ic and broad-lined Ic. KUMAR B.
2018ApJ...866...72D 82           X         2 37 10 IPTF 16hgs: a double-peaked Ca-rich gap transient in a metal-poor, star-forming dwarf galaxy. DE K., KASLIWAL M.M., CANTWELL T., et al.
2018Sci...362..201D viz 2 34 79 A hot and fast ultra-stripped supernova that likely formed a compact neutron star binary. DE K., KASLIWAL M.M., OFEK E.O., et al.
2018MNRAS.481..806B 305       D     X         8 30 3 Early formation of carbon monoxide in the Centaurus A supernova SN 2016adj. BANERJEE D.P.K., JOSHI V., EVANS A., et al.
2019MNRAS.482.1545S viz 17       D               1 320 54 The Berkeley sample of stripped-envelope supernovae. SHIVVERS I., FILIPPENKO A.V., SILVERMAN J.M., et al.
2019ApJ...871..176X 1155     A     X C F     26 22 28 Observations of SN 2017ein reveal shock breakout emission and a massive progenitor star for a Type Ic supernova. XIANG D., WANG X., MO J., et al.
2019PASP..131a4002H viz 42           X         1 173 56 Carnegie Supernova Project-II: the near-infrared spectroscopy program. HSIAO E.Y., PHILLIPS M.M., MARION G.H., et al.
2019ApJ...872..174Y 819     A S   X C       18 11 5 Type Ib/Ic supernovae: effect of nickel mixing on the early-time color evolution and implications for the progenitors. YOON S.-C., CHUN W., TOLSTOV A., et al.
2019MNRAS.485.1559P 17       D               2 106 89 Investigating the properties of stripped-envelope supernovae: what are the implications for their progenitors? PRENTICE S.J., ASHALL C., JAMES P.A., et al.
2019NatAs...3..434F 184       D     X C       4 51 22 A hybrid envelope-stripping mechanism for massive stars from supernova nebular spectroscopy. FANG Q., MAEDA K., KUNCARAYAKTI H., et al.
2019ApJ...880L..22W 17       D               1 31 ~ Optimal classification and outlier detection for stripped-envelope core-collapse supernovae. WILLIAMSON M., MODJAZ M. and BIANCO F.B.
2019MNRAS.489.5802V 17       D               1 72 28 Spectrophotometric templates for core-collapse supernovae and their application in simulations of time-domain surveys. VINCENZI M., SULLIVAN M., FIRTH R.E., et al.
2020ApJ...890...51E 64           X         1 6 127 The explosion of helium stars evolved with mass loss. ERTL T., WOOSLEY S.E., SUKHBOLD T., et al.
2020MNRAS.497.3770G 85           X         2 54 ~ Optical studies of two stripped-envelope supernovae - SN 2015ap (Type Ib) and SN 2016P (Type Ic). GANGOPADHYAY A., MISRA K., SAHU D.K., et al.
2021ApJ...908...75B 17       D               1 556 32 The radio luminosity-risetime function of core-collapse supernovae. BIETENHOLZ M.F., BARTEL N., ARGO M., et al.
2021ApJ...908..232R viz 44           X         1 30 28 Near-infrared and optical observations of Type Ic SN 2020oi and broad-lined Type Ic SN 2020bvc: carbon monoxide, dust, and high-velocity supernova ejecta. RHO J., EVANS A., GEBALLE T.R., et al.
2021ApJ...913..145W 45           X         1 19 24 Model light curves for Type Ib and Ic supernovae. WOOSLEY S.E., SUKHBOLD T. and KASEN D.N.
2021ApJ...918...89A 192       D     X C       4 59 31 The nickel mass distribution of stripped-envelope supernovae: implications for additional power sources. AFSARIARDCHI N., DROUT M.R., KHATAMI D.K., et al.
2021MNRAS.506.1832M 235       D     X C       5 17 ~ SN 2020cpg: an energetic link between Type IIb and Ib supernovae. MEDLER K., MAZZALI P.A., TEFFS J., et al.
2021MNRAS.507.1229P 44           X         1 39 18 Photometric, polarimetric, and spectroscopic studies of the luminous, slow-decaying Type Ib SN 2012au. PANDEY S.B., KUMAR A., KUMAR B., et al.
2021A&A...656A..61D viz 454       D S   X C       9 16 20 Nebular phase properties of supernova Ibc from He-star explosions. DESSART L., HILLIER D.J., SUKHBOLD T., et al.
2022MNRAS.512.1541G 18       D               2 162 ~ Metallicity estimation of core-collapse Supernova H II regions in galaxies within 30 Mpc. GANSS R., PLEDGER J.L., SANSOM A.E., et al.
2022ApJ...928..151F 108       D       C       2 201 16 Statistical Properties of the Nebular Spectra of 103 Stripped-envelope Core-collapse Supernovae. FANG Q., MAEDA K., KUNCARAYAKTI H., et al.
2022ApJ...929L..15F 1058 T   A     X C       22 12 12 The Candidate Progenitor Companion Star of the Type Ib/c
SN 2013ge.
FOX O.D., VAN DYK S.D., WILLIAMS B.F., et al.
2022ApJ...925..175S 959       D     X C       21 117 18 Carnegie Supernova Project-II: Near-infrared Spectroscopy of Stripped-envelope Core-collapse Supernovae. SHAHBANDEH M., HSIAO E.Y., ASHALL C., et al.
2022ApJ...930...31B 18       D               1 90 3 Characterization of Supernovae Based on the Spectral-Temporal Energy Distribution: Two Possible SN Ib Subtypes. BENGYAT O. and GAL-YAM A.
2022MNRAS.514.5686P 18       D               2 87 9 Oxygen and calcium nebular emission line relationships in core-collapse supernovae and Ca-rich transients. PRENTICE S.J., MAGUIRE K., SIEBENALER L., et al.
2022A&A...666L..14D 91             C       1 4 4 Using LSST late-time photometry to constrain Type Ibc supernovae and their progenitors. DESSART L., PRIETO J.L., HILLIER D.J., et al.
2022ApJ...940...27D 45           X         1 149 2 The Properties of Fast Yellow Pulsating Supergiants: FYPS Point the Way to Missing Red Supergiants. DORN-WALLENSTEIN T.Z., LEVESQUE E.M., DAVENPORT J.R.A., et al.
2022A&A...667A..92O 45           X         1 25 2 Supernova double-peaked light curves from double-nickel distribution. ORELLANA M. and BERSTEN M.C.
2023MNRAS.521.2860S 252       D     X   F     5 94 9 A UV census of the environments of stripped-envelope supernovae. SUN N.-C., MAUND J.R. and CROWTHER P.A.
2023ApJ...949L..12A 19       D               1 56 3 Constraining High-energy Neutrino Emission from Supernovae with IceCube. ABBASI R., ACKERMANN M., ADAMS J., et al.
2023ApJ...949..121C 47           X         1 10 1 Exploring the Observability of Surviving Companions of Stripped-envelope Supernovae: A Case Study of Type Ic SN 2020oi. CHEN H.-P., RAU S.-J. and PAN K.-C.
2023ApJ...950...44J 19       D               2 34 ~ Optical Color of Type Ib and Ic Supernovae and Implications for Their Progenitors. JIN H., YOON S.-C. and BLINNIKOV S.
2023A&A...674A.184L 47           X         1 15 8 The molecular chemistry of Type Ibc supernovae and diagnostic potential with the James Webb Space Telescope. LILJEGREN S., JERKSTRAND A., BARKLEM P.S., et al.
2023MNRAS.523.6011H 606   K A D     X C F     12 7 ~ Constraining mass transfer and common-envelope physics with post-supernova companion monitoring. HIRAI R.
2023ApJ...951...34T 47           X         1 19 3 Supernova 2020wnt: An Atypical Superluminous Supernova with a Hidden Central Engine. TINYANONT S., WOOSLEY S.E., TAGGART K., et al.
2023NatAs...7..779L 140           X         3 16 ~ A superluminous supernova lightened by collisions with pulsational pair-instability shells. LIN W., WANG X., YAN L., et al.
2024NatAs...8..111F 20       D               2 85 ~ An aspherical distribution for the explosive burning ash of core-collapse supernovae. FANG Q., MAEDA K., KUNCARAYAKTI H., et al.
2024ApJS..271...33O 50           X         1 10 ~ The Impact of Effective Matter Mixing Based on Three-dimensional Hydrodynamical Models on the Molecule Formation in the Ejecta of SN 1987A. ONO M., NOZAWA T., NAGATAKI S., et al.

goto View the references in ADS