SN 2012ap , the SIMBAD biblio

SN 2012ap , the SIMBAD biblio (76 results) C.D.S. - SIMBAD4 rel 1.8 - 2024.04.19CEST11:53:53


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2012CBET.3037....1J 40 T       O X         2 4 Supernova 2012ap in NGC 1729 = PSN J05001372-0320512. JEWETT L., CENKO S.B., LI W., et al.
2012CBET.3037....2M 39 T       O X         5 4 Supernova 2012ap in NGC 1729 = PSN J05001372-0320512. MILISAVLJEVIC D., FESEN R., SODERBERG A., et al.
2014ApJ...782L...5M 1164 T K A     X C       28 9 17 Interaction between the broad-lined type Ic supernova 2012ap and carriers of diffuse interstellar bands. MILISAVLJEVIC D., MARGUTTI R., CRABTREE K.N., et al.
2014A&A...566A.102S 40           X         1 41 97 GRB 120422A/SN 2012bz: Bridging the gap between low- and high-luminosity gamma-ray bursts. SCHULZE S., MALESANI D., CUCCHIARA A., et al.
2014ApJ...794..121C 40           X         1 14 28 Gamma-ray burst supernovae as standardizable candles. CANO Z.
2014ApJ...797...24V viz 40           X         1 20 71 The hydrogen-poor superluminous supernova iPTF 13ajg and its host galaxy in absorption and emission. VREESWIJK P.M., SAVAGLIO S., GAL-YAM A., et al.
2014ApJ...797..107M 2112 T K A S   X C       51 18 108 Relativistic supernovae have shorter-lived central engines or more extended progenitors: the case of
SN 2012ap.
MARGUTTI R., MILISAVLJEVIC D., SODERBERG A.M., et al.
2015ApJ...799...51M 3123 T K A     X C       77 19 52 The broad-lined Type Ic
SN 2012ap and the nature of relativistic supernovae lacking a gamma-ray burst detection.
MILISAVLJEVIC D., MARGUTTI R., PARRENT J.T., et al.
2015RAA....15..225L 2995       D S   X C       74 14 5 Optical observations of the broad-lined type Ic supernova SN 2012ap. LIU Z., ZHAO X.-L., HUANG F., et al.
2015ApJ...803L..24C 42           X         1 7 31 iPTF14yb: the first discovery of a gamma-ray burst afterglow independent of a high-energy trigger. CENKO S.B., URBAN A.L., PERLEY D.A., et al.
2012ATel.3922....1X 155 T         X         3 3 4

PSN J05001372-0320512
is likely a SN Ib/c simialr to SN 2008D.
XU D., ZHANG J.-J., CHEN J., et al.
2012ATel.3923....1X 116 T         X         2 1 ~ Swift ToO observation of
PSN J05001372-0320512.
XU D. and WANG X.-F.
2015ApJ...805..164N 41           X         1 2 4 Optical synchrotron precursors of radio hypernovae. NAKAUCHI D., KASHIYAMA K., NAGAKURA H., et al.
2015ApJ...805..187C 1376 T K A S   X C       32 10 44 A missing-link in the Supernova-GRB connection: the case of
SN 2012ap.
CHAKRABORTI S., SODERBERG A., CHOMIUK L., et al.
2015MNRAS.452.1535C 119           X C       2 34 21 GRB 140606B/iPTF14bfu: detection of shock-breakout emission from a cosmological γ-ray burst? CANO Z., DE UGARTE POSTIGO A., PERLEY D., et al.
2016ApJ...816...57M 42           X         1 9 18 Sodium absorption systems toward SN Ia 2014J originate on interstellar scales. MAEDA K., TAJITSU A., KAWABATA K.S., et al.
2016MNRAS.456.2848H viz 16       D               1 919 37 Supernovae and their host galaxies - III. The impact of bars and bulges on the radial distribution of supernovae in disc galaxies. HAKOBYAN A.A., KARAPETYAN A.G., BARKHUDARYAN L.V., et al.
2016ApJ...820...75P 40           X         1 47 24 Line identifications of Type I supernovae: on the detection of Si II for these hydrogen-poor events. PARRENT J.T., MILISAVLJEVIC D., SODERBERG A.M., et al.
2016ApJ...821...57D viz 121           X C       2 43 70 The double-peaked SN 2013ge: a Type Ib/c SN with an asymmetric mass ejection or an extended progenitor envelope. DROUT M.R., MILISAVLJEVIC D., PARRENT J., et al.
2016MNRAS.457.1107H 96       D         F     5 126 2 Progenitor constraints for core-collapse supernovae from Chandra X-ray observations. HEIKKILA T., TSYGANKOV S., MATTILA S., et al.
2016A&A...590A..52O 41           X         1 25 32 Interstellar fullerene compounds and diffuse interstellar bands. OMONT A.
2016MNRAS.458.2973P 17       D               5 90 117 The bolometric light curves and physical parameters of stripped-envelope supernovae. PRENTICE S.J., MAZZALI P.A., PIAN E., et al.
2016ApJ...830...42C 80             C       2 28 22 Radio observations of a sample of broad-line type IC supernovae discovered by PTF/IPTF: a search for relativistic explosions. CORSI A., GAL-YAM A., KULKARNI S.R., et al.
2016ApJ...831...41W 41           X         1 7 7 Solving the 56Ni puzzle of magnetar-powered broad-lined type IC supernovae. WANG L.-J., HAN Y.-H., XU D., et al.
2016ApJ...832..108M viz 379   K   D     X C       9 48 141 The spectral SN-GRB connection: systematic spectral comparisons between Type Ic supernovae and broad-lined Type Ic supernovae with and without gamma-ray bursts. MODJAZ M., LIU Y.Q., BIANCO F.B., et al.
2017ApJ...835...13J 85           X         2 22 99 Long-duration superluminous supernovae at late times. JERKSTRAND A., SMARTT S.J., INSERRA C., et al.
2017ApJ...835...64G 19       D               1 91 351 An open catalog for supernova data. GUILLOCHON J., PARRENT J., KELLEY L.Z., et al.
2017ApJ...835..140M 16       D               1 194 134 Ejection of the massive hydrogen-rich envelope timed with the collapse of the stripped SN 2014C. MARGUTTI R., KAMBLE A., MILISAVLJEVIC D., et al.
2017ApJ...837....1Y 268     A     X         7 13 11 Broad-lined supernova 2016coi with a helium envelope. YAMANAKA M., NAKAOKA T., TANAKA M., et al.
2017ApJ...837..128W 81             C       1 13 11 Evidence for magnetar formation in broad-lined Type Ic supernovae 1998bw and 2002ap. WANG L.J., YU H., LIU L.D., et al.
2017MNRAS.466.2633S 44           X         1 13 44 Supernova ejecta with a relativistic wind from a central compact object: a unified picture for extraordinary supernovae. SUZUKI A. and MAEDA K.
2017ApJ...846...50M 16       D               2 40 15 IPTF15eqv: multiwavelength expose of a peculiar calcium-rich transient. MILISAVLJEVIC D., PATNAUDE D.J., RAYMOND J.C., et al.
2017MNRAS.470.2835L 187     A     X         5 25 2 TRES survey of variable diffuse interstellar bands. LAW C.J., MILISAVLJEVIC D., CRABTREE K.N., et al.
2017ApJ...847...54C 162           X C       3 21 13 iPTF17cw: an engine-driven supernova candidate discovered independent of a gamma-ray trigger. CORSI A., CENKO S.B., KASLIWAL M.M., et al.
2017ApJ...851...54W 544       D     X C       13 21 10 A Monte Carlo approach to magnetar-powered transients. II. Broad-lined Type Ic supernovae not associated with GRBs. WANG L.J., CANO Z., WANG S.Q., et al.
2018ApJ...856...56C 124           X   F     2 26 32 Jets in hydrogen-poor superluminous supernovae: constraints from a comprehensive analysis of radio observations. COPPEJANS D.L., MARGUTTI R., GUIDORZI C., et al.
2018MNRAS.475.2591S 535           X C       12 22 10 Broad-line Type Ic supernova SN 2014ad. SAHU D.K., ANUPAMA G.C., CHAKRADHARI N.K., et al.
2018MNRAS.478.4162P 41           X         1 26 20 SN 2016coi/ASASSN-16fp: an example of residual helium in a typeIc supernova? PRENTICE S.J., ASHALL C., MAZZALI P.A., et al.
2018ApJ...863...32D 41           X         1 6 5 Radio emission from the cocoon of a GRB jet: implications for Relativistic supernovae and off-axis GRB emission. DE COLLE F., KUMAR P. and AGUILERA-DENA D.R.
2018ApJ...864...45M viz 83           X         2 37 58 Results from a systematic survey of X-ray emission from hydrogen-poor superluminous SNe. MARGUTTI R., CHORNOCK R., METZGER B.D., et al.
2018MNRAS.473.3776K 700     A D     X C F     16 20 8 ASASSN-16fp (SN 2016coi): a transitional supernova between Type Ic and broad-lined Ic. KUMAR B.
2018MNRAS.481..566K viz 16       D               1 365 4 The impact of spiral density waves on the distribution of supernovae. KARAPETYAN A.G., HAKOBYAN A.A., BARKHUDARYAN L.V., et al.
2019ApJ...870...38S 42           X         1 13 1 Relativistic supernova ejecta colliding with a circumstellar medium: an application to the low-luminosity GRB 171205A. SUZUKI A., MAEDA K. and SHIGEYAMA T.
2019MNRAS.483.1114B 42           X         1 25 4 Narrow transient absorptions in late-time optical spectra of type Ia supernovae: evidence for large clumps of iron-rich ejecta? BLACK C.S., FESEN R.A. and PARRENT J.T.
2019A&A...621A..71T 42           X         1 74 54 Analysis of broad-lined Type Ic supernovae from the (intermediate) Palomar Transient Factory. TADDIA F., SOLLERMAN J., FREMLING C., et al.
2019MNRAS.482.1545S viz 17       D               1 320 54 The Berkeley sample of stripped-envelope supernovae. SHIVVERS I., FILIPPENKO A.V., SILVERMAN J.M., et al.
2019PASP..131a4002H viz 42           X         1 173 56 Carnegie Supernova Project-II: the near-infrared spectroscopy program. HSIAO E.Y., PHILLIPS M.M., MARION G.H., et al.
2019MNRAS.485.1559P 17       D               1 106 89 Investigating the properties of stripped-envelope supernovae: what are the implications for their progenitors? PRENTICE S.J., ASHALL C., JAMES P.A., et al.
2019A&A...624A.143K 43           X         1 64 71 Highly luminous supernovae associated with gamma-ray bursts. I. GRB 111209A/SN 2011kl in the context of stripped-envelope and superluminous supernovae. KANN D.A., SCHADY P., OLIVARES F.E., et al.
2019ApJ...879...89M 209           X C       4 18 ~ Constraints on the environment and energetics of the broad-line Ic SN2014ad from deep radio and X-ray observations. MARONGIU M., GUIDORZI C., MARGUTTI R., et al.
2019NatAs...3..434F 17       D               2 51 22 A hybrid envelope-stripping mechanism for massive stars from supernova nebular spectroscopy. FANG Q., MAEDA K., KUNCARAYAKTI H., et al.
2019ApJ...880..150S 42           X         1 10 ~ Three-dimensional hydrodynamic simulations of supernova ejecta with a central energy source. SUZUKI A. and MAEDA K.
2019ApJ...883..147T viz 125           X         3 22 4 SN 2016coi (ASASSN-16fp): an energetic H-stripped core-collapse supernova from a massive stellar progenitor with large mass loss. TERRERAN G., MARGUTTI R., BERSIER D., et al.
2019MNRAS.489.5802V 17       D               1 72 28 Spectrophotometric templates for core-collapse supernovae and their application in simulations of time-domain surveys. VINCENZI M., SULLIVAN M., FIRTH R.E., et al.
2020MNRAS.491.4735B 43           X         1 11 ~ AT 2018cow VLBI: no long-lived relativistic outflow. BIETENHOLZ M.F., MARGUTTI R., COPPEJANS D., et al.
2020ApJ...893..132H viz 213           X C       4 23 ~ The broad-lined Ic supernova ZTF18aaqjovh (SN 2018bvw): an optically discovered engine-driven supernova candidate with luminous radio emission. HO A.Y.Q., CORSI A., CENKO S.B., et al.
2020MNRAS.494...84N 230       D     X C       5 20 ~ Radio view of a broad-line Type Ic supernova ASASSN-16fp. NAYANA A.J. and CHANDRA P.
2020MNRAS.497.3770G 255           X C F     4 54 ~ Optical studies of two stripped-envelope supernovae - SN 2015ap (Type Ib) and SN 2016P (Type Ic). GANGOPADHYAY A., MISRA K., SAHU D.K., et al.
2021ApJ...907...78F 44           X         1 28 ~ Afterglow light curves of nonrelativistic ejecta mass in a stratified circumstellar medium. FRAIJA N., BETANCOURT KAMENETSKAIA B., DAINOTTI M.G., et al.
2021ApJ...908...75B 17       D               1 556 32 The radio luminosity-risetime function of core-collapse supernovae. BIETENHOLZ M.F., BARTEL N., ARGO M., et al.
2021ApJ...908..217S 88           X         2 13 14 Two-dimensional radiation-hydrodynamic simulations of supernova ejecta with a central power source. SUZUKI A. and MAEDA K.
2021MNRAS.508.5390S 88               F     1 11 17 Proto-magnetar jets as central engines for broad-lined Type Ic supernovae. SHANKAR S., MOSTA P., BARNES J., et al.
2021ApJ...923L..24S 827     A D     X C       19 27 11 Luminous late-time radio emission from supernovae detected by the Karl G. Jansky Very Large Array Sky Survey (VLASS). STROH M.C., TERRERAN G., COPPEJANS D.L., et al.
2022ApJ...927...61K viz 18       D               1 46 1 Investigating the Observational Properties of Type Ib Supernova SN 2017iro. KUMAR B., SINGH A., SAHU D.K., et al.
2022MNRAS.512.3195Z 108       D         F     4 148 7 The Lick Observatory Supernova Search follow-up program: photometry data release of 70 SESNe. ZHENG W., STAHL B.E., DE JAEGER T., et al.
2022MNRAS.512.3627D 46           X         1 6 6 The large landscape of supernova, GRB, and cocoon interactions. DE COLLE F., KUMAR P. and HOEFLICH P.
2022ApJ...928..151F 63       D     X         2 201 16 Statistical Properties of the Nebular Spectra of 103 Stripped-envelope Core-collapse Supernovae. FANG Q., MAEDA K., KUNCARAYAKTI H., et al.
2022ApJ...925..175S 18       D               3 117 18 Carnegie Supernova Project-II: Near-infrared Spectroscopy of Stripped-envelope Core-collapse Supernovae. SHAHBANDEH M., HSIAO E.Y., ASHALL C., et al.
2022ApJ...930...31B 18       D               1 90 3 Characterization of Supernovae Based on the Spectral-Temporal Energy Distribution: Two Possible SN Ib Subtypes. BENGYAT O. and GAL-YAM A.
2022ApJ...931..153S 18       D               1 84 5 Constraints on the Explosion Timescale of Core-collapse Supernovae Based on Systematic Analysis of Light Curves. SAITO S., TANAKA M., SAWADA R., et al.
2022MNRAS.514.5686P 18       D               2 87 9 Oxygen and calcium nebular emission line relationships in core-collapse supernovae and Ca-rich transients. PRENTICE S.J., MAGUIRE K., SIEBENALER L., et al.
2022ApJ...937...40K 358           X         8 22 4 Ultraviolet Spectroscopy and TARDIS Models of the Broad-lined Type Ic Supernova 2014ad. KWOK L.A., WILLIAMSON M., JHA S.W., et al.
2023MNRAS.522.2267M 47           X         1 7 ~ Diagnosing the ejecta properties of engine-driven supernovae from observables in their initial phase. MAEDA K., SUZUKI A. and IZZO L.
2023A&A...673A.136R 47           X         1 20 ~ Expectations for fast radio bursts in neutron star-massive star binaries. RAJWADE K.M. and VAN DEN EIJNDEN J.
2023A&A...675A..82S 47           X         1 54 ~ The Carnegie Supernova Project I Optical spectroscopy of stripped-envelope supernovae. STRITZINGER M.D., HOLMBO S., MORRELL N., et al.
2024NatAs...8..111F 500           X   F     9 85 ~ An aspherical distribution for the explosive burning ash of core-collapse supernovae. FANG Q., MAEDA K., KUNCARAYAKTI H., et al.

goto View the references in ADS