SN 2007bi , the SIMBAD biblio

SN 2007bi , the SIMBAD biblio (219 results) C.D.S. - SIMBAD4 rel 1.8 - 2024.04.24CEST13:34:10


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2007IAUC.8834....1M 38 3 Supernovae 2007be-2007bz. MORETTI S., TOMASELLI S., PUCKETT T., et al.
2009Natur.462..624G 20 10 401 Supernova 2007bi as a pair-instability explosion. GAL-YAM A., MAZZALI P., OFEK E.O., et al.
2009Natur.462..579L 1 2 6 Different stellar demise. LANGER N.
2010MNRAS.402..161M 320       D     X C       8 60 29 Characteristic velocities of stripped-envelope core-collapse supernova cores. MAURER J.I., MAZZALI P.A., DENG J., et al.
2010A&A...512A..70Y 5112   K A D S   X C       133 47 112 Two type IC supernovae in low-metallicity, dwarf galaxies: diversity of explosions. YOUNG D.R., SMARTT S.J., VALENTI S., et al.
2010AJ....139.2218M 15       D               1 21 37 New observations of the very luminous supernova 2006gy: evidence for echoes. MILLER A.A., SMITH N., LI W., et al.
2010ApJ...716..510G 142           X         1 1 209 The first galaxies: chemical enrichment, mixing, and star formation. GREIF T.H., GLOVER S.C.O., BROMM V., et al.
2010ApJ...717..245K 328   K       X C F     5 5 614 Supernova light curves powered by young magnetars. KASEN D. and BILDSTEN L.
2010ApJ...717L..83M 1671 T K A S   X C F     40 5 86 A core-collapse supernova model for the extremely luminous type IC supernova 2007bi: an alternative to the pair-instability supernova model. MORIYA T., TOMINAGA N., TANAKA M., et al.
2010ApJ...718L.127D 268           X C F     5 16 52 Discovery of the extremely energetic supernova 2008fz. DRAKE A.J., DJORGOVSKI S.G., PRIETO J.L., et al.
2010ApJ...722.1624K 38           X         1 20 23 SDWFS-MT-1: a self-obscured luminous supernova at z ≃ 0.2. KOZLOWSKI S., KOCHANEK C.S., STERN D., et al.
2010ApJ...724L..16P 237           X C       5 13 223 Ultra-bright optical transients are linked with type IC supernovae. PASTORELLO A., SMARTT S.J., BOTTICELLA M.T., et al.
2010MNRAS.408..731C 66     A     X         2 41 437 The R136 star cluster hosts several stars whose individual masses greatly exceed the accepted 150M stellar mass limit. CROWTHER P.A., SCHNURR O., HIRSCHI R., et al.
2010MNRAS.409..284M 38           X         1 10 18 Relic proto-stellar discs and the origin of luminous circumstellar interaction in core-collapse supernovae. METZGER B.D.
2011ApJ...727...15N 477       D     X         13 34 133 The extreme hosts of extreme supernovae. NEILL J.D., SULLIVAN M., GAL-YAM A., et al.
2011ApJ...728..129J 265     A S   X         6 2 51 The early evolution of primordial pair-instability supernovae. JOGGERST C.C. and WHALEN D.J.
2011MNRAS.412L..78Y 1577   K A D     X C F     40 5 30 A progenitor for the extremely luminous type Ic supernova 2007bi. YOSHIDA T. and UMEDA H.
2011ApJ...729...88R 39           X         1 25 71 Pushing the boundaries of conventional core-collapse supernovae: the extremely energetic supernova SN 2003ma. REST A., FOLEY R.J., GEZARI S., et al.
2011ApJ...729..143C viz 116           X         3 27 54 SN 2008am: a super-luminous type IIn supernova. CHATZOPOULOS E., WHEELER J.C., VINKO J., et al.
2011ApJ...730...34S 208       D     X C       5 33 101 SN 2010jl in UGC 5189: yet another luminous type IIn supernova in a metal-poor galaxy. STOLL R., PRIETO J.L., STANEK K.Z., et al.
2011PASP..123..237T 75           X         1 2 150 SYNAPPS: data-driven analysis for supernova spectroscopy. THOMAS R.C., NUGENT P.E. and MEZA J.C.
2011ApJ...734..102K 396           X C       9 8 198 Pair instability supernovae: light curves, spectra, and shock breakout. KASEN D., WOOSLEY S.E. and HEGER A.
2011Natur.474..484Q viz 11 ~ Hydrogen-poor superluminous stellar explosions. QUIMBY R.M., KULKARNI S.R., KASLIWAL M.M., et al.
2011AN....332..434M 77           X         2 27 43 Stellar forensics with the supernova-GRB connection. Ludwig Biermann Award Lecture 2010. MODJAZ M.
2011A&A...532A..29M 38           X         1 48 5 The discovery and classification of 16 supernovae at high redshifts in ELAIS-S1. The Stockholm VIMOS Supernova Survey II. MELINDER J., DAHLEN T., MENCIA-TRINCHANT L., et al.
2011ApJ...741...97D viz 116           X C       2 82 319 The first systematic study of type Ibc supernova multi-band light curves. DROUT M.R., SODERBERG A.M., GAL-YAM A., et al.
2011A&A...535L...6V 15       D               1 20 18 Electromagnetic priors for black hole spindown in searches for gravitational waves from supernovae and long GRBs. VAN PUTTEN M.H.P.M., DELLA VALLE M. and LEVINSON A.
2011ApJ...743..114C 119           X         3 17 166 Pan-STARRS1 discovery of two ultraluminous supernovae at z ~ 0.9. CHOMIUK L., CHORNOCK R., SODERBERG A.M., et al.
2011BASI...39..375K 30 7 Transients in the local universe: systematically bridging the gap between novae and supernovae. KASLIWAL M.M.
2010CBET.2476....1V 38 T       O X         3 3 Supernova 2010hy. VINKO J., WHEELER J.C., CHATZOPOULOS E., et al.
2012A&A...538A.120L viz 15       D               1 5598 37 A unified supernova catalogue. LENNARZ D., ALTMANN D. and WIEBUSCH C.
2012ApJ...747...88N 122           X         3 14 180 Relativistic shock Breakouts–A variety of gamma-ray flares: from low-luminosity gamma-ray bursts to type Ia supernovae. NAKAR E. and SARI R.
2012ApJ...748...42C 52           X         1 5 139 Effects of rotation on the minimum mass of primordial progenitors of pair-instability supernovae. CHATZOPOULOS E. and WHEELER J.C.
2012ApJ...749L..28V 78           X         2 19 53 A spectroscopically normal type IC supernova from a very massive progenitor. VALENTI S., TAUBENBERGER S., PASTORELLO A., et al.
2011A&ARv..19...43G 193           X C       4 78 169 Production of dust by massive stars at high redshift. GALL C., HJORTH J. and ANDERSEN A.C.
2012MNRAS.422.2675T 40           X         1 15 42 Detectability of high-redshift superluminous supernovae with upcoming optical and near-infrared surveys. TANAKA M., MORIYA T.J., YOSHIDA N., et al.
2012MNRAS.422.2701P 161           X         4 4 52 Pair-instability supernovae at the epoch of reionization. PAN T., KASEN D. and LOEB A.
2012MNRAS.423.1652O 40           X         1 9 33 Quark nova imprint in the extreme supernova explosion SN 2006gy. OUYED R., KOSTKA M., KONING N., et al.
2012A&A...541A.129L 45           X         1 10 130 SN 2006oz: rise of a super-luminous supernova observed by the SDSS-II SN survey. LELOUDAS G., CHATZOPOULOS E., DILDAY B., et al.
2012MNRAS.423.2203P 220     A     X         6 4 29 Pair-instability supernovae via collision runaway in young dense star clusters. PAN T., LOEB A. and KASEN D.
2012A&A...542A.113Y 132           X         1 1 186 Evolution of massive population III stars with rotation and magnetic fields. YOON S.-C., DIERKS A. and LANGER N.
2012ApJ...756..184S 232           X         6 27 40 SN 2010ay is a luminous and broad-lined type IC supernova within a low-metallicity host galaxy. SANDERS N.E., SODERBERG A.M., VALENTI S., et al.
2012Sci...337..927G 7 31 493 Luminous supernovae. GAL-YAM A.
2012A&A...544A..81H viz 15       D               1 7232 67 Supernovae and their host galaxies. I. The SDSS DR8 database and statistics. HAKOBYAN A.A., ADIBEKYAN V.Zh., ARAMYAN L.S., et al.
2012Natur.491..228C viz 9 7 139 Superluminous supernovae at redshifts of 2.05 and 3.90. COOKE J., SULLIVAN M., GAL-YAM A., et al.
2012ApJ...760L..11U 39           X         1 16 2 Unusual long and luminous optical transient in the Subaru deep field. URATA Y., TSAI P.P., HUANG K., et al.
2012ApJ...760..154C 77           X         1 1 76 Hydrogen-poor circumstellar shells from pulsational pair-instability supernovae with rapidly rotating progenitors. CHATZOPOULOS E. and WHEELER J.C.
2012RAA....12.1637R 39           X         1 32 13 A search for metal-poor stars pre-enriched by pair-instability supernovae. I. A pilot study for target selection from Sloan Digital Sky Survey. REN J., CHRISTLIEB N. and ZHAO G.
2013ApJ...762L...6W 81           X         1 1 84 Seeing the first supernovae at the edge of the universe with JWST. WHALEN D.J., FRYER C.L., HOLZ D.E., et al.
2012MNRAS.426L..76D 1123   K A S   X C       27 5 171 Superluminous supernovae: 56Ni power versus magnetar radiation. DESSART L., HILLIER D.J., WALDMAN R., et al.
2013ApJS..205....2N 45           X         1 8 110 Supernova neutrino light curves and spectra for various progenitor stars: from core collapse to proto-neutron star cooling. NAKAZATO K., SUMIYOSHI K., SUZUKI H., et al.
2013MNRAS.428.3227D 1839   K   S   X C       45 9 109 Radiative properties of pair-instability supernova explosions. DESSART L., WALDMAN R., LIVNE E., et al.
2012MmSAI..83..264M 39           X         1 11 6 Core-collapse supernova diversities. From the weakest to most powerful explosions. MAEDA K., MORIYA T., KAWABATA K., et al.
2013MNRAS.431..912Q 175       D     X         5 25 151 Rates of superluminous supernovae at z ∼ 0.2. QUIMBY R.M., YUAN F., AKERLOF C., et al.
2013ApJ...767..162C 156           X C       3 26 45 PS1-10afx at z = 1.388: Pan-STARRS1 discovery of a new type of superluminous supernova. CHORNOCK R., BERGER E., REST A., et al.
2013ApJ...768...95W 57           X         1 1 36 Finding the first cosmic explosions. II. Core-collapse supernovae. WHALEN D.J., JOGGERST C.C., FRYER C.L., et al.
2013ApJ...768..195W 41           X         1 9 40 Illuminating the primeval universe with type IIn supernovae. WHALEN D.J., EVEN W., LOVEKIN C.C., et al.
2013ApJ...770L..38M 377     A     X C       9 7 50 SN 2012au: a golden link between superluminous supernovae and their lower-luminosity counterparts. MILISAVLJEVIC D., SODERBERG A.M., MARGUTTI R., et al.
2013ApJ...770..128I 85           X         2 23 332 Super-luminous type IC supernovae: catching a magnetar by the tail. INSERRA C., SMARTT S.J., JERKSTRAND A., et al.
2013ApJ...771...97L 119           X         3 15 70 PS1-10bzj: a fast, hydrogen-poor superluminous supernova in a metal-poor host galaxy. LUNNAN R., CHORNOCK R., BERGER E., et al.
2013ApJ...771..136L 39           X         1 23 37 Superluminous x-rays from a superluminous supernova. LEVAN A.J., READ A.M., METZGER B.D., et al.
2013MNRAS.433..838P 39           X         1 19 11 Superluminous X-ray emission from the interaction of supernova ejecta with dense circumstellar shells. PAN T., PATNAUDE D. and LOEB A.
2013MNRAS.433.1114Y 542     A     X C       13 7 170 Evolution and fate of very massive stars. YUSOF N., HIRSCHI R., MEYNET G., et al.
2013ApJ...773...76C 1797     A D S   X C       45 23 177 Analytical light curve models of superluminous supernovae: χ2-minimization of parameter fits. CHATZOPOULOS E., WHEELER J.C., VINKO J., et al.
2013ApJ...776..129C 97           X         2 1 38 Multi-dimensional simulations of rotating pair-instability supernovae. CHATZOPOULOS E., WHEELER J.C. and COUCH S.M.
2013MNRAS.435.2483T 42           X         1 3 23 Detectability of high-redshift superluminous supernovae with upcoming optical and near-infrared surveys - II. Beyond z = 6. TANAKA M., MORIYA T.J. and YOSHIDA N.
2013ApJ...777..110W 55           X         1 2 67 Finding the first cosmic explosions. I. Pair-instability supernovae. WHALEN D.J., EVEN W., FREY L.H., et al.
2013Natur.502..310K 2 1 Astrophysics: Super-luminous supernovae on the rise. KASEN D.
2013ApJ...778..168K 312           X C       7 8 3 A plausible (Overlooked) super-luminous supernova in the Sloan Digital Sky Survey Stripe 82 data. KOSTRZEWA-RUTKOWSKA Z., KOZLOWSKI S., WYRZYKOWSKI L., et al.
2012ARA&A..50..107L 89           X         2 26 641 Presupernova evolution of massive single and binary stars. LANGER N.
2013ApJ...779...98H 159           X         4 12 76 Two superluminous supernovae from the early universe discovered by the supernova legacy survey. HOWELL D.A., KASEN D., LIDMAN C., et al.
2013ApJ...779..114V 39           X         1 23 25 Are superluminous supernovae and long GRBs the products of dynamical processes in young dense star clusters? VAN DEN HEUVEL E.P.J. and PORTEGIES ZWART S.F.
2014MNRAS.437..656M viz 1653     A D     X C       42 19 62 The superluminous supernova PS1-11ap: bridging the gap between low and high redshift. McCRUM M., SMARTT S.J., KOTAK R., et al.
2014ApJ...780..117S 82           X         2 19 131 Ages of young star clusters, massive blue stragglers, and the upper mass limit of stars: analyzing age-dependent stellar mass functions. SCHNEIDER F.R.N., IZZARD R.G., DE MINK S.E., et al.
2014MNRAS.438.3119Y 2165   K A D S   X C F     53 7 18 Type Ic core-collapse supernova explosions evolved from very massive stars. YOSHIDA T., OKITA S. and UMEDA H.
2014ApJ...785...37B viz 236           X C       5 16 29 SN 2010mb: direct evidence for a supernova interacting with a large amount of hydrogen-free circumstellar material. BEN-AMI S., GAL-YAM A., MAZZALI P.A., et al.
2013Natur.502..346N 18 6 221 Slowly fading super-luminous supernovae that are not pair-instability explosions. NICHOLL M., SMARTT S.J., JERKSTRAND A., et al.
2014AJ....147..118R 157           X   F     3 59 117 Absolute-magnitude distributions of supernovae. RICHARDSON D., JENKINS III R.L., WRIGHT J., et al.
2014ApJ...787..138L 294       D     X C       7 32 225 Hydrogen-poor superluminous supernovae and long-duration gamma-ray bursts have similar host galaxies. LUNNAN R., CHORNOCK R., BERGER E., et al.
2014MNRAS.440.2528M 40           X         1 12 31 Probing cosmic ray ion acceleration with radio-submm and gamma-ray emission from interaction-powered supernovae. MURASE K., THOMPSON T.A. and OFEK E.O.
2014A&A...565A..70K 615     A     X C       15 14 50 Observational properties of low-redshift pair instability supernovae. KOZYREVA A., BLINNIKOV S., LANGER N., et al.
2014MNRAS.441..289B 80           X         2 21 56 The supernova CSS121015:004244+132827: a clue for understanding superluminous supernovae. BENETTI S., NICHOLL M., CAPPELLARO E., et al.
2014A&A...566A.146K viz 83           X         2 3 28 Explosion and nucleosynthesis of low-redshift pair-instability supernovae. KOZYREVA A., YOON S.-C. and LANGER N.
2014ApJ...792...28C 85           X         2 4 50 Two-dimensional simulations of pulsational pair-instability supernovae. CHEN K.-J., WOOSLEY S., HEGER A., et al.
2014ApJ...792...44C 49           X         1 2 43 Pair instability supernovae of very massive population III stars. CHEN K.-J., HEGER A., WOOSLEY S., et al.
2014Sci...345..868B 1 1 2 Imprint of an ancient conflagration. BROMM V.
2014MNRAS.442.1640D 41           X         1 4 23 Probing the stellar initial mass function with high-z supernovae. DE SOUZA R.S., ISHIDA E.E.O., WHALEN D.J., et al.
2014ApJ...795..142G viz 16       D               1 448 7 Defining photometric peculiar type Ia supernovae. GONZALEZ-GAITAN S., HSIAO E.Y., PIGNATA G., et al.
2014ApJ...796...87I 198           X         5 28 79 Superluminous supernovae as standardizable candles and high-redshift distance probes. INSERRA C. and SMARTT S.J.
2014MNRAS.444.2096N 42           X         1 17 135 Superluminous supernovae from PESSTO. NICHOLL M., SMARTT S.J., JERKSTRAND A., et al.
2014ApJ...797....2K 158           X         4 10 21 Radio observations reveal a smooth circumstellar environment around the extraordinary type Ib supernova 2012au. KAMBLE A., SODERBERG A.M., CHOMIUK L., et al.
2014ApJ...797....9W 158   K       X         4 6 23 Pair-instability supernovae in the local universe. WHALEN D.J., SMIDT J., HEGER A., et al.
2015ApJ...798...12V 80             C       1 19 63 A luminous, fast rising UV-transient discovered by ROTSE: a tidal disruption event? VINKO J., YUAN F., QUIMBY R.M., et al.
2015ApJ...799...18C 1256     A     X C       31 7 22 Emission from pair-instability supernovae with rotation. CHATZOPOULOS E., VAN ROSSUM D.R., CRAIG W.J., et al.
2015ApJ...799..107W 80             C       1 15 47 Superluminous supernovae powered by magnetars: late-time light curves and hard emission leakage. WANG S.Q., WANG L.J., DAI Z.G., et al.
2013RAA....13.1202O 40           X         1 7 15 The peculiar case of the ''double-humped'' super-luminous supernova SN 2006oz. OUYED R. and LEAHY D.
2013RAA....13.1463O 39           X         1 11 12 SN 2009ip and SN 2010mc as dual-shock Quark-Novae. OUYED R., KONING N. and LEAHY D.
2015MNRAS.447.3992G 51           X         1 1 23 Neutrino viscosity and drag: impact on the magnetorotational instability in protoneutron stars. GUILET J., MULLER E. and JANKA H.-T.
2015MNRAS.448.1206M viz 262     A     X         7 272 59 Selecting superluminous supernovae in faint galaxies from the first year of the Pan-STARRS1 Medium Deep Survey. McCRUM M., SMARTT S.J., REST A., et al.
2015ApJ...804...90L 215       D     X         6 19 56 Zooming in on the progenitors of superluminous supernovae with the HST. LUNNAN R., CHORNOCK R., BERGER E., et al.
2015ApJ...805...44S 80           X         2 5 13 Finding the first cosmic explosions. IV. 90-140 MPair-instability supernovae. SMIDT J., WHALEN D.J., CHATZOPOULOS E., et al.
2015MNRAS.449..917L 18       D               3 29 173 Spectroscopy of superluminous supernova host galaxies. A preference of hydrogen-poor events for extreme emission line galaxies. LELOUDAS G., SCHULZE S., KRUHLER T., et al.
2015MNRAS.449.1215P 278           X C       6 25 41 DES13S2cmm: the first superluminous supernova from the Dark Energy Survey. PAPADOPOULOS A., D'ANDREA C.B., SULLIVAN M., et al.
2015ApJ...807..147W 41           X         1 9 20 A unified energy-reservoir model containing contributions from 56Ni and neutron stars and its implication for luminous type IC supernovae. WANG S.Q., WANG L.J., DAI Z.G., et al.
2015AstL...41...95B 2 3 16 Hydrogenless superluminous supernova PTF12dam in the model of an explosion inside an extended envelope. BAKLANOV P.V., SOROKINA E.I. and BLINNIKOV S.I.
2015ApJ...807L..18N 83           X         2 12 99 LSQ14bdq: a type IC super-luminous supernova with a double-peaked light curve. NICHOLL M., SMARTT S.J., JERKSTRAND A., et al.
2015MNRAS.451.3151E 40           X         1 20 2 Explosion of a massive, He-rich star at z = 0.16. ELIAS-ROSA N., PASTORELLO A., NICHOLL M., et al.
2015RAA....15.1823L 40           X         1 5 1 SN 1054 : A pulsar-powered supernova ? LI S.-Z., YU Y.-W. and HUANG Y.
2015MNRAS.452.1567C 1828     A D     X C       46 23 78 The host galaxy and late-time evolution of the superluminous supernova PTF12dam. CHEN T.-W., SMARTT S.J., JERKSTRAND A., et al.
2015MNRAS.452.3869N 255       D     X         7 55 156 On the diversity of superluminous supernovae: ejected mass as the dominant factor. NICHOLL M., SMARTT S.J., JERKSTRAND A., et al.
2015ApJ...814..108Y 862   K A     X C       21 9 72 Detection of broad Hα emission lines in the late-time spectra of a hydrogen-poor superluminous supernova. YAN L., QUIMBY R., OFEK E., et al.
2015MNRAS.454.4357K 41           X         1 5 19 Can pair-instability supernova models match the observations of superluminous supernovae? KOZYREVA A. and BLINNIKOV S.
2015A&A...584L...5M 44           X         1 2 17 Revealing the binary origin of Type Ic superluminous supernovae through nebular hydrogen emission. MORIYA T.J., LIU Z.-W., MacKEY J., et al.
2016MNRAS.455.3207J 1353   K A S   X C F     31 9 36 Nebular spectra of pair-instability supernovae. JERKSTRAND A., SMARTT S.J. and HEGER A.
2016MNRAS.456.1320T 53           X         1 1 13 Exact and approximate expressions of energy generation rates and their impact on the explosion properties of pair instability supernovae. TAKAHASHI K., YOSHIDA T., UMEDA H., et al.
2016ApJ...819...35A viz 84             C       1 28 115 Rapidly rising transients in the supernova-superluminous supernova gap. ARCAVI I., WOLF W.M., HOWELL D.A., et al.
2016ApJ...820...75P 281           X C       6 47 24 Line identifications of Type I supernovae: on the detection of Si II for these hydrogen-poor events. PARRENT J.T., MILISAVLJEVIC D., SODERBERG A.M., et al.
2016ApJ...823...83M 81             C       1 5 9 The jet-powered supernovae of ∼105M [?] population III stars are observable by euclid, WFIRST, WISH, and JWST. MATSUMOTO T., NAKAUCHI D., IOKA K., et al.
2016MNRAS.458...84A viz 16       D               4 127 46 A Hubble Space Telescope survey of the host galaxies of Superluminous Supernovae. ANGUS C.R., LEVAN A.J., PERLEY D.A., et al.
2016MNRAS.458.3455M 235     A     X         6 10 101 Spectrum formation in superluminous supernovae (Type I). MAZZALI P.A., SULLIVAN M., PIAN E., et al.
2016ApJ...826...39N 649           X C       15 18 133 SN 2015BN: a detailed multi-wavelength view of a nearby superluminous supernova. NICHOLL M., BERGER E., SMARTT S.J., et al.
2016MNRAS.460L..55M 16       D               1 23 10 Constraining the ellipticity of strongly magnetized neutron stars powering superluminous supernovae. MORIYA T.J. and TAURIS T.M.
2016MNRAS.460.3232C 16       D               1 128 5 Physical conditions and element abundances in supernova and γ-ray burst host galaxies at different redshifts. CONTINI M.
2016ApJ...828....3B viz 81           X         2 15 22 ASASSN-15lh: a superluminous ultraviolet rebrightening observed by Swift and Hubble. BROWN P.J., YANG Y., COOKE J., et al.
2016ApJ...828L..18N 49           X         1 9 85 Superluminous supernova SN 2015bn in the nebular phase: evidence for the engine-powered explosion of a stripped massive star. NICHOLL M., BERGER E., MARGUTTI R., et al.
2016ApJ...828...87W 331           X C       7 3 30 A triple-energy-source model for superluminous supernova iPTF13ehe. WANG S.Q., LIU L.D., DAI Z.G., et al.
2016A&A...593A.115J 16       D               1 31 11 Taking stock of superluminous supernovae and long gamma-ray burst host galaxy comparison using a complete sample of LGRBs. JAPELJ J., VERGANI S.D., SALVATERRA R., et al.
2016ApJ...830...13P viz 44           X         1 42 174 Host-galaxy properties of 32 low-redshift superluminous supernovae from the Palomar transient factory. PERLEY D.A., QUIMBY R.M., YAN L., et al.
2016ApJ...831...41W 41           X         1 7 7 Solving the 56Ni puzzle of magnetar-powered broad-lined type IC supernovae. WANG L.-J., HAN Y.-H., XU D., et al.
2016ApJ...831...79I 44           X         1 11 49 Spectropolarimetry of superluminous supernovae: insight into their geometry. INSERRA C., BULLA M., SIM S.A., et al.
2016ApJ...831..144L 1191     A     X C       29 14 54 PS1-14bj: a hydrogen-poor superluminous supernova with a long rise and slow decay. LUNNAN R., CHORNOCK R., BERGER E., et al.
2017ApJ...835...13J 1937   K A S   X C       46 22 99 Long-duration superluminous supernovae at late times. JERKSTRAND A., SMARTT S.J., INSERRA C., et al.
2017ApJ...835...58V viz 83           X         2 14 40 On the early-time excess emission in hydrogen-poor superluminous supernovae. VREESWIJK P.M., LELOUDAS G., GAL-YAM A., et al.
2016A&A...596A..67R 442           X C       10 60 14 SN 2012aa: A transient between Type Ibc core-collapse and superluminous supernovae. ROY R., SOLLERMAN J., SILVERMAN J.M., et al.
2017ApJ...835..177M 163           X         4 7 11 Properties of magnetars mimicking 56Ni-powered light curves in Type Ic superluminous supernovae. MORIYA T.J., CHEN T.-W. and LANGER N.
2017ApJ...835..266T 412           X C       9 2 12 Pulsational pair-instability model for superluminous supernova PTF12dam: interaction and radioactive decay. TOLSTOV A., NOMOTO K., BLINNIKOV S., et al.
2017MNRAS.464.2854K 51           X         1 4 43 Fast evolving pair-instability supernova models: evolution, explosion, light curves. KOZYREVA A., GILMER M., HIRSCHI R., et al.
2017ApJ...840...12Y 139       D     X         4 38 51 A statistical study of superluminous supernovae using the magnetar engine model and implications for their connection with gamma-ray bursts and hypernovae. YU Y.-W., ZHU J.-P., LI S.-Z., et al.
2017ApJ...842...26L 162           X C       3 26 23 A Monte Carlo approach to magnetar-powered transients. I. Hydrogen-deficient superluminous supernovae. LIU L.-D., WANG S.-Q., WANG L.-J., et al.
2017A&A...602A...9C 42           X         1 25 37 The evolution of superluminous supernova LSQ14mo and its interacting host galaxy system. CHEN T.-W., NICHOLL M., SMARTT S.J., et al.
2017MNRAS.468.4642I 1163   K A     X C F     27 35 37 Complexity in the light curves and spectra of slow-evolving superluminous supernovae. INSERRA C., NICHOLL M., CHEN T.-W., et al.
2017MNRAS.469.1246K 43           X         1 13 36 Gaia16apd - a link between fast and slowly declining type I superluminous supernovae. KANGAS T., BLAGORODNOVA N., MATTILA S., et al.
2017ApJ...845...85L viz 708   K   D S   X         17 47 77 Analyzing the largest spectroscopic data set of hydrogen-poor super-luminous supernovae. LIU Y.-Q., MODJAZ M. and BIANCO F.B.
2017ApJ...846..100G 246           X         6 6 14 Pair-instability supernova simulations: progenitor evolution, explosion, and light curves. GILMER M.S., KOZYREVA A., HIRSCHI R., et al.
2017MNRAS.470.3566C 506       D     X   F     12 22 54 Superluminous supernova progenitors have a half-solar metallicity threshold. CHEN T.-W., SMARTT S.J., YATES R.M., et al.
2017MNRAS.470.4739S 73           X         1 7 227 Very massive stars, pair-instability supernovae and intermediate-mass black holes with the SEVN code. SPERA M. and MAPELLI M.
2017ApJ...848....6Y 474     A     X C       11 23 91 Hydrogen-poor superluminous supernovae with late-time Hα emission: three events from the intermediate Palomar Transient Factory. YAN L., LUNNAN R., PERLEY D.A., et al.
2017ApJ...850...55N 142       D     X         4 41 176 The magnetar model for Type I superluminous supernovae. I. Bayesian analysis of the full multicolor light-curve sample with MOSFiT. NICHOLL M., GUILLOCHON J. and BERGER E.
2017ApJ...850..148W 81             C       1 11 6 Modeling the most luminous supernova associated with a gamma-ray burst, SN 2011kl. WANG S.-Q., CANO Z., WANG L.-J., et al.
2017ApJ...851...95S 17       D               1 24 24 Magnetar-powered superluminous supernovae must first be exploded by jets. SOKER N. and GILKIS A.
2018ApJ...852...81L viz 191     A     X         5 32 93 Hydrogen-poor superluminous supernovae from the Pan-STARRS1 Medium Deep Survey. LUNNAN R., CHORNOCK R., BERGER E., et al.
2018MNRAS.473.1258S 264       D     X         7 75 131 Cosmic evolution and metal aversion in superluminous supernova host galaxies. SCHULZE S., KRUHLER T., LELOUDAS G., et al.
2018ApJ...854..175I 82             C       1 48 19 A statistical approach to identify superluminous supernovae and probe their diversity. INSERRA C., PRAJS S., GUTIERREZ C.P., et al.
2018ApJ...855....2Q 182       D     X         5 63 93 Spectra of hydrogen-poor superluminous supernovae from the Palomar Transient Factory. QUIMBY R.M., DE CIA A., GAL-YAM A., et al.
2018ApJ...857..111T viz 42           X         1 73 76 Stellar yields of rotating first stars. II. Pair-instability supernovae and comparison with observations. TAKAHASHI K., YOSHIDA T. and UMEDA H.
2018A&A...613A...5D 42           X         1 8 9 Super-luminous Type II supernovae powered by magnetars. DESSART L. and AUDIT E.
2018ApJ...860..100D viz 208           X         5 41 119 Light curves of hydrogen-poor superluminous supernovae from the Palomar Transient Factory. DE CIA A., GAL-YAM A., RUBIN A., et al.
2018MNRAS.478..110S 41           X         1 16 6 Broad-band emission properties of central engine-powered supernova ejecta interacting with a circumstellar medium. SUZUKI A. and MAEDA K.
2018MNRAS.478.4162P 41           X         1 26 20 SN 2016coi/ASASSN-16fp: an example of residual helium in a typeIc supernova? PRENTICE S.J., ASHALL C., MAZZALI P.A., et al.
2018ApJ...864...45M viz 166           X         4 37 58 Results from a systematic survey of X-ray emission from hydrogen-poor superluminous SNe. MARGUTTI R., CHORNOCK R., METZGER B.D., et al.
2018ApJ...864L..36M 82             C       1 16 8 Evidence for a pulsar wind nebula in the Type Ib peculiar supernova SN 2012au. MILISAVLJEVIC D., PATNAUDE D.J., CHEVALIER R.A., et al.
2018ApJ...865....9B 82           X         2 18 9 The Type I superluminous supernova PS16aqv: lightcurve complexity and deep limits on radioactive ejecta in a fast event. BLANCHARD P.K., NICHOLL M., BERGER E., et al.
2018ApJ...867..113M 99       D       C       3 37 11 Systematic investigation of the fallback accretion-powered model for hydrogen-poor superluminous supernovae. MORIYA T.J., NICHOLL M. and GUILLOCHON J.
2018ApJ...869..166V 16       D               1 58 6 Superluminous supernovae in LSST: rates, detection metrics, and light-curve modeling. VILLAR V.A., NICHOLL M. and BERGER E.
2019ApJ...871..102N 270       D     X         7 20 55 Nebular-phase spectra of superluminous supernovae: physical insights from observational and statistical properties. NICHOLL M., BERGER E., BLANCHARD P.K., et al.
2019MNRAS.482.1545S viz 100       D         F     2 320 54 The Berkeley sample of stripped-envelope supernovae. SHIVVERS I., FILIPPENKO A.V., SILVERMAN J.M., et al.
2019ApJ...872...90B 42           X         1 18 4 A hydrogen-poor superluminous supernova with enhanced iron-group absorption: a new link between SLSNe and broad-lined Type Ic SNe. BLANCHARD P.K., NICHOLL M., BERGER E., et al.
2019A&A...621A.141D 863     A     X C       20 16 33 Simulations of light curves and spectra for superluminous Type Ic supernovae powered by magnetars. DESSART L.
2019MNRAS.484.3443M 2993 T K A     X C F     69 7 1 Synthetic spectra of energetic core-collapse supernovae and the early spectra of
SN 2007bi and SN 1999as.
MORIYA T.J., MAZZALI P.A. and TANAKA M.
2019MNRAS.484.3451M 3076   K A     X C F     72 7 2 The nature of PISN candidates: clues from nebular spectra. MAZZALI P.A., MORIYA T.J., TANAKA M., et al.
2019ApJ...874...68C 42           X         1 32 1 A systematic study of superluminous supernova light-curve models using clustering. CHATZOPOULOS E. and TUMINELLO R.
2019ApJ...874..158R 43           X         1 2 2 Detection and classification of supernovae beyond z ∼ 2 redshift with the James Webb Space Telescope. REGOS E. and VINKO J.
2019ApJ...875..140C 42           X         1 4 ~ Synthetic spectra of pair-instability supernovae in 3D. CHATZOPOULOS E., GILMER M.S., WOLLAEGER R.T., et al.
2019A&A...624A.143K 43           X         1 64 71 Highly luminous supernovae associated with gamma-ray bursts. I. GRB 111209A/SN 2011kl in the context of stripped-envelope and superluminous supernovae. KANN D.A., SCHADY P., OLIVARES F.E., et al.
2019RAA....19...63W 209           X C       4 28 3 The Energy Sources of Superluminous Supernovae. WANG S.-Q., WANG L.-J. and DAI Z.-G.
2019ApJ...881...87G viz 252           X         6 20 27 SN 2016iet: the pulsational or pair instability explosion of a low-metallicity massive CO core embedded in a dense hydrogen-poor circumstellar medium. GOMEZ S., BERGER E., NICHOLL M., et al.
2019ApJ...882...36M 57           X         1 10 157 Pulsational pair-instability supernovae in very close binaries. MARCHANT P., RENZO M., FARMER R., et al.
2019ApJ...886...24L 351       D     X C       8 18 ~ A search for late-time radio emission and fast radio bursts from superluminous supernovae. LAW C.J., OMAND C.M.B., KASHIYAMA K., et al.
2019ApJ...887...72L 46           X         1 17 76 Pulsational pair-instability supernovae. I. Pre-collapse evolution and pulsational mass ejection. LEUNG S.-C., NOMOTO K. and BLINNIKOV S.
2020ApJ...892...28K 1124       D     X C       26 20 ~ SN 2010kd: photometric and spectroscopic analysis of a slow-decaying superluminous supernova. KUMAR A., PANDEY S.B., KONYVES-TOTH R., et al.
2020ApJ...894L..10H 128           X C       2 36 ~ Examining a peak-luminosity/decline-rate relationship for tidal disruption events. HINKLE J.T., HOLOIEN T.W.-S., SHAPPEE B.J., et al.
2020ApJ...894...94R 43           X         1 6 ~ Detecting pair-instability supernovae at z <= 5 with the James Webb Space Telescope. REGOS E., VINKO J. and ZIEGLER B.L.
2020MNRAS.494.5909K 128           X         3 4 ~ Jet-shaped geometrically modified light curves of core-collapse supernovae. KAPLAN N. and SOKER N.
2020ApJ...897..114B 17       D               1 67 ~ The pre-explosion mass distribution of hydrogen-poor superluminous supernova progenitors and new evidence for a mass-spin correlation. BLANCHARD P.K., BERGER E., NICHOLL M., et al.
2020MNRAS.497.3542P 1047     A     X C F     23 7 ~ PTF11rka: an interacting supernova at the crossroads of stripped-envelope and H-poor superluminous stellar core collapses. PIAN E., MAZZALI P.A., MORIYA T.J., et al.
2020NatAs...4..893N 86             C       1 17 30 An extremely energetic supernova from a very massive star in a dense medium. NICHOLL M., BLANCHARD P.K., BERGER E., et al.
2020ApJ...901...61L viz 622     A     X C       14 27 32 Four (super)luminous supernovae from the first months of the ZTF survey. LUNNAN R., YAN L., PERLEY D.A., et al.
2020ApJ...903...45K 57           X         1 7 99 Populating the upper black hole mass gap through stellar collisions in young star clusters. KREMER K., SPERA M., BECKER D., et al.
2020ApJ...904...74G 17       D               1 145 ~ FLEET: a redshift-agnostic machine learning pipeline to rapidly identify hydrogen-poor superluminous supernovae. GOMEZ S., BERGER E., BLANCHARD P.K., et al.
2020A&A...643A..47O 17       D               1 93 ~ The interacting nature of dwarf galaxies hosting superluminous supernovae. ORUM S.V., IVENS D.L., STRANDBERG P., et al.
2021ApJ...909...24K 61       D     X         2 93 ~ Photospheric velocity gradients and ejecta masses of hydrogen-poor superluminous supernovae: proxies for distinguishing between fast and slow events. KONYVES-TOTH R. and VINKO J.
2021MNRAS.502.1678K 131           X         3 51 12 SN 2020ank: a bright and fast-evolving H-deficient superluminous supernova. KUMAR A., KUMAR B., PANDEY S.B., et al.
2021MNRAS.502.2120F 131           X C       2 23 16 SN 2017gci: a nearby Type I Superluminous Supernova with a bumpy tail. FIORE A., CHEN T.-W., JERKSTRAND A., et al.
2021ApJ...912...21E 540       D S   X         12 125 18 Late-time radio and millimeter observations of superluminous supernovae and long gamma-ray bursts: implications for central engines, fast radio bursts, and obscured star formation. EFTEKHARI T., MARGALIT B., OMAND C.M.B., et al.
2021MNRAS.504.2535I 44           X         1 31 24 The first Hubble diagram and cosmological constraints using superluminous supernovae. INSERRA C., SULLIVAN M., ANGUS C.R., et al.
2021ApJ...915...80L 45           X         1 12 19 Fast blue optical transients due to circumstellar interaction and the mysterious supernova SN 2018gep. LEUNG S.-C., FULLER J. and NOMOTO K.
2021MNRAS.507.1229P 174           X   F     3 39 18 Photometric, polarimetric, and spectroscopic studies of the luminous, slow-decaying Type Ib SN 2012au. PANDEY S.B., KUMAR A., KUMAR B., et al.
2021ApJ...921...64B 44           X         1 8 ~ Late-time Hubble Space Telescope observations of a hydrogen-poor superluminous supernova reveal the power-law decline of a magnetar central engine. BLANCHARD P.K., BERGER E., NICHOLL M., et al.
2021ApJ...922...17H 366       D     X         9 40 2 A VLA survey of late-time radio emission from superluminous supernovae and the host galaxies. HATSUKADE B., TOMINAGA N., MOROKUMA T., et al.
2022MNRAS.511.2505L 49           X         1 3 12 Probing the initial mass function of the first stars with transients. LAZAR A. and BROMM V.
2022MNRAS.512.2573T 141           X C       2 2 14 Top-heavy stellar mass distribution in galactic nuclei inferred from the universally high abundance ratio of [Fe/Mg]. TOYOUCHI D., INAYOSHI K., ISHIGAKI M.N., et al.
2022MNRAS.514.2627C 45           X         1 63 5 A puzzle solved after two decades: SN 2002gh among the brightest of superluminous supernovae. CARTIER R., HAMUY M., CONTRERAS C., et al.
2022ApJ...933...14H 18       D               1 35 28 Bumpy Declining Light Curves Are Common in Hydrogen-poor Superluminous Supernovae. HOSSEINZADEH G., BERGER E., METZGER B.D., et al.
2022MNRAS.517.2056G 421       D     X C F     8 30 9 SN 2020wnt: a slow-evolving carbon-rich superluminous supernova with no O II lines and a bumpy light curve. GUTIERREZ C.P., PASTORELLO A., BERSTEN M., et al.
2022ApJ...940...69K 45           X         1 32 2 Premaximum Spectroscopic Diversity of Hydrogen-poor Superluminous Supernovae. KONYVES-TOTH R.
2022ApJ...941..107G 90           X         2 238 16 Luminous Supernovae: Unveiling a Population between Superluminous and Normal Core-collapse Supernovae. GOMEZ S., BERGER E., NICHOLL M., et al.
2022ApJ...941L..32K 90             C       1 16 4 Late-time H/He-poor Circumstellar Interaction in the Type Ic Supernova SN 2021ocs: An Exposed Oxygen-Magnesium Layer and Extreme Stripping of the Progenitor. KUNCARAYAKTI H., MAEDA K., DESSART L., et al.
2023ApJ...943...12M 47           X         1 5 1 Light Curves and Event Rates of Axion Instability Supernovae. MORI K., MORIYA T.J., TAKIWAKI T., et al.
2023ApJ...943...41C 205       D     X         5 71 17 The Hydrogen-poor Superluminous Supernovae from the Zwicky Transient Facility Phase I Survey. I. Light Curves and Measurements. CHEN Z.H., YAN L., KANGAS T., et al.
2023ApJ...949...23Z 47           X         1 17 2 SN 2017egm: A Helium-rich Superluminous Supernova with Multiple Bumps in the Light Curves. ZHU J., JIANG N., DONG S., et al.
2023A&A...673A.107O 93           X         2 14 6 Toward nebular spectral modeling of magnetar-powered supernovae. OMAND C.M.B. and JERKSTRAND A.
2023ApJ...951...34T 327           X C       6 19 3 Supernova 2020wnt: An Atypical Superluminous Supernova with a Hidden Central Engine. TINYANONT S., WOOSLEY S.E., TAGGART K., et al.
2023ApJ...953..132W 47           X         1 8 ~ Monte Carlo Radiation Transport for Astrophysical Transients Powered by Circumstellar Interaction. WAGLE G.A., CHATZOPOULOS E., WOLLAEGER R.T., et al.
2023ApJ...954...44K 47           X         1 29 ~ Type W and Type 15bn Subgroups of Hydrogen-poor Superluminous Supernovae: Premaximum Diversity, Postmaximum Homogeneity? KONYVES-TOTH R. and SELI B.
2023ApJ...954L..45M 47           X         1 14 ~ Luminous Radio Emission from the Superluminous Supernova 2017ens at 3.3 yr after Explosion. MARGUTTI R., BRIGHT J.S., MATTHEWS D.J., et al.
2023MNRAS.526.1822K 112       D         F     2 31 ~ Reduction of supernova light curves by vector Gaussian processes. KORNILOV M.V., SEMENIKHIN T.A. and PRUZHINSKAYA M.V.
2024ApJ...961..146U 50           X         1 8 ~ Metal-enriched Pair-instability Supernovae: Effects of Rotation. UMEDA H. and NAGELE C.
2024ApJ...961..169H 20       D               2 110 ~ An Extensive Hubble Space Telescope Study of the Offset and Host Light Distributions of Type I Superluminous Supernovae. HSU B., BLANCHARD P.K., BERGER E., et al.
2024A&A...683A.223S viz 1170       D     X C F     22 28 ~ 1100 days in the life of the supernova 2018ibb The best pair-instability supernova candidate, to date. SCHULZE S., FRANSSON C., KOZYREVA A., et al.

goto View the references in ADSLimited to 100