LSQ 12dlf , the SIMBAD biblio

LSQ 12dlf , the SIMBAD biblio (51 results) C.D.S. - SIMBAD4 rel 1.8 - 2024.04.16CEST08:23:43


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2014ApJ...796...87I 213       D     X         6 28 79 Superluminous supernovae as standardizable candles and high-redshift distance probes. INSERRA C. and SMARTT S.J.
2014MNRAS.444.2096N 1356   K   D S   X C       33 17 135 Superluminous supernovae from PESSTO. NICHOLL M., SMARTT S.J., JERKSTRAND A., et al.
2015ApJ...799..107W 740   K A S   X C       17 15 47 Superluminous supernovae powered by magnetars: late-time light curves and hard emission leakage. WANG S.Q., WANG L.J., DAI Z.G., et al.
2015AJ....149..165W 16       D               1 11 15 Testing cosmological models with Type IC super luminous supernovae. WEI J.-J., WU X.-F. and MELIA F.
2012ATel.4299....1S 77           X         2 10 1 PESSTO spectroscopic classification of optical transients. SMARTT S.J., INSERRA C., FRASER M., et al.
2012ATel.4329....1I 39           X         1 6 2 Further spectral classification of PESSTO blue transients. INSERRA C., SMARTT S.J., FRASER M., et al.
2015MNRAS.449.1215P 40           X         1 25 41 DES13S2cmm: the first superluminous supernova from the Dark Energy Survey. PAPADOPOULOS A., D'ANDREA C.B., SULLIVAN M., et al.
2015MNRAS.452.3869N 295       D     X C       7 55 156 On the diversity of superluminous supernovae: ejected mass as the dominant factor. NICHOLL M., SMARTT S.J., JERKSTRAND A., et al.
2015MNRAS.454.4357K 422   K A     X C       10 5 19 Can pair-instability supernova models match the observations of superluminous supernovae? KOZYREVA A. and BLINNIKOV S.
2016ApJ...817..132D 5 10 52 The most luminous supernova ASASSN-15lh: signature of a newborn rapidly rotating strange quark star. DAI Z.G., WANG S.Q., WANG J.S., et al.
2016ApJ...820...75P 241           X C       5 47 24 Line identifications of Type I supernovae: on the detection of Si II for these hydrogen-poor events. PARRENT J.T., MILISAVLJEVIC D., SODERBERG A.M., et al.
2016MNRAS.457L..79N 219       D     X   F     5 14 35 Seeing double: the frequency and detectability of double-peaked superluminous supernova light curves. NICHOLL M. and SMARTT S.J.
2015ATel.7102....1L 40           X         1 10 6 PESSTO spectroscopic classification of optical transients. LE GUILLOU L., MITRA A., BAUMONT S., et al.
2016ApJ...824L..24K 123           X C       2 14 46 Iptf search for an optical counterpart to gravitational-wave transient GW150914. KASLIWAL M.M., CENKO S.B., SINGER L.P., et al.
2016ApJ...826...39N 87           X         2 18 133 SN 2015BN: a detailed multi-wavelength view of a nearby superluminous supernova. NICHOLL M., BERGER E., SMARTT S.J., et al.
2016MNRAS.460L..55M 16       D               1 23 10 Constraining the ellipticity of strongly magnetized neutron stars powering superluminous supernovae. MORIYA T.J. and TAURIS T.M.
2016A&A...596A..67R 80           X         2 60 14 SN 2012aa: A transient between Type Ibc core-collapse and superluminous supernovae. ROY R., SOLLERMAN J., SILVERMAN J.M., et al.
2017ApJ...840...12Y 139       D     X         4 38 51 A statistical study of superluminous supernovae using the magnetar engine model and implications for their connection with gamma-ray bursts and hypernovae. YU Y.-W., ZHU J.-P., LI S.-Z., et al.
2017ApJ...842...26L 219       D     X C       5 26 23 A Monte Carlo approach to magnetar-powered transients. I. Hydrogen-deficient superluminous supernovae. LIU L.-D., WANG S.-Q., WANG L.-J., et al.
2017A&A...602A...9C 163           X C       3 25 37 The evolution of superluminous supernova LSQ14mo and its interacting host galaxy system. CHEN T.-W., NICHOLL M., SMARTT S.J., et al.
2017MNRAS.468.4642I 204           X   F     4 35 37 Complexity in the light curves and spectra of slow-evolving superluminous supernovae. INSERRA C., NICHOLL M., CHEN T.-W., et al.
2017MNRAS.469.1246K 514     A     X C       12 13 36 Gaia16apd - a link between fast and slowly declining type I superluminous supernovae. KANGAS T., BLAGORODNOVA N., MATTILA S., et al.
2017ApJ...845...85L viz 139       D     X C       3 47 77 Analyzing the largest spectroscopic data set of hydrogen-poor super-luminous supernovae. LIU Y.-Q., MODJAZ M. and BIANCO F.B.
2017MNRAS.470.3566C 465       D     X   F     11 22 54 Superluminous supernova progenitors have a half-solar metallicity threshold. CHEN T.-W., SMARTT S.J., YATES R.M., et al.
2017ApJ...850...55N 20       D               2 41 176 The magnetar model for Type I superluminous supernovae. I. Bayesian analysis of the full multicolor light-curve sample with MOSFiT. NICHOLL M., GUILLOCHON J. and BERGER E.
2018MNRAS.473.1258S 17       D               2 75 131 Cosmic evolution and metal aversion in superluminous supernova host galaxies. SCHULZE S., KRUHLER T., LELOUDAS G., et al.
2018ApJ...854..175I 16       D               1 48 19 A statistical approach to identify superluminous supernovae and probe their diversity. INSERRA C., PRAJS S., GUTIERREZ C.P., et al.
2018ApJ...855....2Q 100       D     X         3 63 93 Spectra of hydrogen-poor superluminous supernovae from the Palomar Transient Factory. QUIMBY R.M., DE CIA A., GAL-YAM A., et al.
2018ApJ...856...56C 83             C       1 26 32 Jets in hydrogen-poor superluminous supernovae: constraints from a comprehensive analysis of radio observations. COPPEJANS D.L., MARGUTTI R., GUIDORZI C., et al.
2018A&A...611A..45R 82           X         2 47 13 Search for γ-ray emission from superluminous supernovae with the Fermi-LAT. RENAULT-TINACCI N., KOTERA K., NERONOV A., et al.
2018ApJ...865....9B 782           X C       18 18 9 The Type I superluminous supernova PS16aqv: lightcurve complexity and deep limits on radioactive ejecta in a fast event. BLANCHARD P.K., NICHOLL M., BERGER E., et al.
2018ApJ...867..113M 16       D               2 37 11 Systematic investigation of the fallback accretion-powered model for hydrogen-poor superluminous supernovae. MORIYA T.J., NICHOLL M. and GUILLOCHON J.
2018ApJ...869..166V 58       D     X         2 58 6 Superluminous supernovae in LSST: rates, detection metrics, and light-curve modeling. VILLAR V.A., NICHOLL M. and BERGER E.
2019MNRAS.482.1545S viz 17       D               1 320 54 The Berkeley sample of stripped-envelope supernovae. SHIVVERS I., FILIPPENKO A.V., SILVERMAN J.M., et al.
2019ApJ...872...90B 460           X C       10 18 4 A hydrogen-poor superluminous supernova with enhanced iron-group absorption: a new link between SLSNe and broad-lined Type Ic SNe. BLANCHARD P.K., NICHOLL M., BERGER E., et al.
2019RAA....19...63W 84             C       1 28 3 The Energy Sources of Superluminous Supernovae. WANG S.-Q., WANG L.-J. and DAI Z.-G.
2020MNRAS.493.5170H 17       D               6 17 ~ Observing superluminous supernovae and long gamma-ray bursts as potential birthplaces of repeating fast radio bursts. HILMARSSON G.H., SPITLER L.G., KEANE E.F., et al.
2020ApJ...897..114B 17       D               1 67 ~ The pre-explosion mass distribution of hydrogen-poor superluminous supernova progenitors and new evidence for a mass-spin correlation. BLANCHARD P.K., BERGER E., NICHOLL M., et al.
2020ApJ...904...74G 17       D               1 145 ~ FLEET: a redshift-agnostic machine learning pipeline to rapidly identify hydrogen-poor superluminous supernovae. GOMEZ S., BERGER E., BLANCHARD P.K., et al.
2021ApJ...909...24K 235       D     X         6 93 ~ Photospheric velocity gradients and ejecta masses of hydrogen-poor superluminous supernovae: proxies for distinguishing between fast and slow events. KONYVES-TOTH R. and VINKO J.
2021MNRAS.502.1678K 131           X         3 51 12 SN 2020ank: a bright and fast-evolving H-deficient superluminous supernova. KUMAR A., KUMAR B., PANDEY S.B., et al.
2021ApJ...912...21E 366       D S   X         8 125 18 Late-time radio and millimeter observations of superluminous supernovae and long gamma-ray bursts: implications for central engines, fast radio bursts, and obscured star formation. EFTEKHARI T., MARGALIT B., OMAND C.M.B., et al.
2021MNRAS.504.2535I 17       D               1 31 24 The first Hubble diagram and cosmological constraints using superluminous supernovae. INSERRA C., SULLIVAN M., ANGUS C.R., et al.
2021ApJ...917...97W viz 87             C       1 27 3 ASASSN-14ms: the most energetic known explosion of a Type Ibn supernova and its physical origin. WANG X., LIN W., ZHANG J., et al.
2021ApJ...922...17H 192       D     X         5 40 2 A VLA survey of late-time radio emission from superluminous supernovae and the host galaxies. HATSUKADE B., TOMINAGA N., MOROKUMA T., et al.
2022ApJ...933...14H 18       D               1 35 28 Bumpy Declining Light Curves Are Common in Hydrogen-poor Superluminous Supernovae. HOSSEINZADEH G., BERGER E., METZGER B.D., et al.
2022A&A...666A..30P 179           X C       3 43 14 SN 2018bsz: A Type I superluminous supernova with aspherical circumstellar material. PURSIAINEN M., LELOUDAS G., PARASKEVA E., et al.
2022ApJ...940...69K 18       D               3 32 2 Premaximum Spectroscopic Diversity of Hydrogen-poor Superluminous Supernovae. KONYVES-TOTH R.
2022ApJ...941..107G 45           X         1 238 16 Luminous Supernovae: Unveiling a Population between Superluminous and Normal Core-collapse Supernovae. GOMEZ S., BERGER E., NICHOLL M., et al.
2023ApJ...954...44K 19       D               2 29 ~ Type W and Type 15bn Subgroups of Hydrogen-poor Superluminous Supernovae: Premaximum Diversity, Postmaximum Homogeneity? KONYVES-TOTH R. and SELI B.
2023MNRAS.526.1822K 112       D         F     2 31 ~ Reduction of supernova light curves by vector Gaussian processes. KORNILOV M.V., SEMENIKHIN T.A. and PRUZHINSKAYA M.V.

goto View the references in ADS