Kepler-89c , the SIMBAD biblio

Kepler-89c , the SIMBAD biblio (58 results) C.D.S. - SIMBAD4 rel 1.8 - 2024.04.19CEST14:06:51


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2012Natur.486..375B viz 15       D               1 378 520 An abundance of small exoplanets around stars with a wide range of metallicities. BUCHHAVE L.A., LATHAM D.W., JOHANSEN A., et al.
2012ApJ...756..185F viz 15       D               1 1856 44 Transit timing observations from Kepler. V. Transit timing variation candidates in the first sixteen months from polynomial models. FORD E.B., RAGOZZINE D., ROWE J.F., et al.
2012ApJ...759L..36H 145     A     X         4 6 83 Planet-planet eclipse and the Rossiter-McLaughlin effect of a multiple transiting system: joint analysis of the Subaru spectroscopy and the Kepler photometry. HIRANO T., NARITA N., SATO B., et al.
2012ApJ...761...59L 7 21 311 How thermal evolution and mass-loss sculpt populations of super-earths and sub-neptunes: application to the Kepler-11 system and beyond. LOPEZ E.D., FORTNEY J.J. and MILLER N.
2011PASP..123..412W viz 15       D               1 2897 398 The Exoplanet Orbit Database. WRIGHT J.T., KAKHOURI O., MARCY G.W., et al.
2013ApJS..204...24B viz 16       D               1 3274 922 Planetary candidates observed by Kepler. III. Analysis of the first 16 months of data. BATALHA N.M., ROWE J.F., BRYSON S.T., et al.
2013A&A...552A.119S viz 16       D               1 1487 118 Magnetic energy fluxes in sub-Alfvenic planet star and moon planet interactions. SAUR J., GRAMBUSCH T., DULING S., et al.
2013ApJ...778..185M 2655     A D     X C       68 6 38 Characterization of the KOI-94 system with transit timing variation analysis: implication for the planet-planet eclipse. MASUDA K., HIRANO T., TARUYA A., et al.
2014ApJS..210...19B viz 16       D               1 5860 211 Planetary candidates observed by Kepler IV: planet sample from Q1-Q8 (22 months). BURKE C.J., BRYSON S.T., MULLALLY F., et al.
2014A&A...561L...1B 39           X         1 10 19 SOPHIE velocimetry of Kepler transit candidates. X. KOI-142c: first radial velocity confirmation of a non-transiting exoplanet discovered by transit timing. BARROS S.C.C., DIAZ R.F., SANTERNE A., et al.
2014ApJ...783....4W viz 16       D               1 487 103 Influence of stellar multiplicity on planet formation. I. Evidence of suppressed planet formation due to stellar companions within 20 AU and validation of four planets from the Kepler multiple planet candidates. WANG J., XIE J.-W., BARCLAY T., et al.
2014ApJ...784...45R viz 16       D               1 1691 388 Validation of Kepler's multiple planet candidates. III. Light curve analysis and announcement of hundreds of new multi-planet systems. ROWE J.F., BRYSON S.T., MARCY G.W., et al.
2014ApJ...785...15J viz 40           X         1 33 105 Kepler-79's low density planets. JONTOF-HUTTER D., LISSAUER J.J., ROWE J.F., et al.
2014ApJ...787..173H 16       D               2 58 38 Mass-radius relations and core-envelope decompositions of super-earths and sub-neptunes. HOWE A.R., BURROWS A. and VERNE W.
2014A&A...566A.103L viz 16       D               3 359 102 High-resolution imaging of Kepler planet host candidates. A comprehensive comparison of different techniques. LILLO-BOX J., BARRADO D. and BOUY H.
2014ApJ...790..146F viz 16       D               1 918 579 Architecture of Kepler's multi-transiting systems. II. New investigations with twice as many candidates. FABRYCKY D.C., LISSAUER J.J., RAGOZZINE D., et al.
2015ApJS..217...16R viz 16       D               1 8625 149 Planetary candidates observed by Kepler. V. Planet sample from Q1-Q12 (36 months). ROWE J.F., COUGHLIN J.L., ANTOCI V., et al.
2015ApJS..217...31M viz 16       D               1 2033 213 Planetary candidates observed by Kepler. VI. Planet sample from Q1–Q16 (47 months). MULLALLY F., COUGHLIN J.L., THOMPSON S.E., et al.
2015ApJ...805L..11H 532       D     X C       13 11 2 Methane planets and their mass-radius relation. HELLED R., PODOLAK M. and VOS E.
2015ApJ...806..248W viz 16       D               1 143 44 Influence of stellar multiplicity on planet formation. III. Adaptive optics imaging of Kepler stars with gas giant planets. WANG J., FISCHER D.A., HORCH E.P., et al.
2015ApJ...809....8B viz 16       D               1 112329 282 Terrestrial planet occurrence rates for the Kepler GK dwarf sample. BURKE C.J., CHRISTIANSEN J.L., MULLALLY F., et al.
2016ApJ...820...39J 17       D               1 107 126 Secure mass measurements from transit timing: 10 Kepler exoplanets between 3 and 8 M with diverse densities and incident fluxes. JONTOF-HUTTER D., FORD E.B., ROWE J.F., et al.
2016ApJ...825...19W viz 18       D               1 99 221 Probabilistic mass-radius relationship for sub-Neptune-sized planets. WOLFGANG A., ROGERS L.A. and FORD E.B.
2016ApJ...825...98H 16       D               1 166 128 Warm jupiters are less lonely than hot jupiters: close neighbors. HUANG C., WU Y. and TRIAUD A.H.M.J.
2016ApJS..225....9H viz 40           X         1 2132 124 Transit timing observations from Kepler. IX. Catalog of the full long-cadence data set. HOLCZER T., MAZEH T., NACHMANI G., et al.
2016AJ....152..158T viz 16       D               1 4387 37 Detection of potential transit signals in 17 quarters of Kepler data: results of the final Kepler mission transiting planet search (DR25). TWICKEN J.D., JENKINS J.M., SEADER S.E., et al.
2017MNRAS.466.1868C viz 16       D               1 176 21 An overabundance of low-density Neptune-like planets. CUBILLOS P., ERKAEV N.V., JUVAN I., et al.
2017A&A...601A.128N viz 42           X         1 10 10 Mass determination of K2-19b and K2-19c from radial velocities and transit timing variations. NESPRAL D., GANDOLFI D., DEEG H.J., et al.
2017AJ....154....5H viz 138       D     X         4 231 145 Kepler planet masses and eccentricities from TTV analysis. HADDEN S. and LITHWICK Y.
2017AJ....154..108J viz 16       D               1 3237 137 The California-Kepler Survey. II. Precise physical properties of 2025 Kepler planets and their host stars. JOHNSON J.A., PETIGURA E.A., FULTON B.J., et al.
2017AJ....154..109F viz 16       D               1 900 847 The California-Kepler Survey. III. A gap in the radius distribution of small planets. FULTON B.J., PETIGURA E.A., HOWARD A.W., et al.
2018AJ....155...48W viz 16       D               1 911 204 The California-Kepler survey. V. Peas in a pod: planets in a Kepler multi-planet system are similar in size and regularly spaced. WEISS L.M., MARCY G.W., PETIGURA E.A., et al.
2018ApJS..234....9O viz 82             C       1 436 14 A spectral approach to transit timing variations. OFIR A., XIE J.-W., JIANG C.-F., et al.
2018AJ....155..206A viz 16       D               3 183 5 Systematic search for rings around Kepler planet candidates: constraints on ring size and occurrence rate. AIZAWA M., MASUDA K., KAWAHARA H., et al.
2018ApJ...866...99B viz 16       D               1 7129 233 Revised radii of Kepler stars and planet's using Gaia Data Release 2. BERGER T.A., HUBER D., GAIDOS E., et al.
2018AJ....156..254W viz 16       D               2 1269 42 The California-Kepler Survey. VI. Kepler multis and singles have similar planet and stellar properties indicating a common origin. WEISS L.M., ISAACSON H.T., MARCY G.W., et al.
2018AJ....156..264F viz 16       D               1 1909 365 The California-Kepler Survey. VII. Precise planet radii leveraging Gaia DR2 reveal the stellar mass dependence of the Planet radius gap. FULTON B.J. and PETIGURA E.A.
2019MNRAS.484.3233B 84               F     1 35 5 HARPS-N radial velocities confirm the low densities of the Kepler-9 planets. BORSATO L., MALAVOLTA L., PIOTTO G., et al.
2019RAA....19...41G viz 100       D     X         3 1982 17 Transit timing variations and linear ephemerides of confirmed Kepler transiting exoplanets. GAJDOS P., VANKO M. and PARIMUCHA S.
2019ApJ...875...29M viz 17       D               1 2918 72 A spectroscopic analysis of the California-Kepler Survey sample. I. Stellar parameters, planetary radii, and a slope in the radius gap. MARTINEZ C.F., CUNHA K., GHEZZI L., et al.
2019AJ....157..171K viz 17       D               1 4069 2 Visual analysis and demographics of Kepler transit timing variations. KANE M., RAGOZZINE D., FLOWERS X., et al.
2019AJ....157..174O viz 17       D               1 176 61 Discovery of a third transiting planet in the Kepler-47 circumbinary system. OROSZ J.A., WELSH W.F., HAGHIGHIPOUR N., et al.
2019AJ....157..235C viz 17       D               2 415 7 Observations of the Kepler field with TESS: predictions for planet yield and observable features. CHRIST C.N., MONTET B.T. and FABRYCKY D.C.
2019AJ....158...72K 125           X         3 9 ~ Orbital stability and precession effects in the Kepler-89 system. KANE S.R.
2020AJ....159...41T viz 17       D               1 564 ~ Estimating planetary mass with deep learning. TASKER E.J., LANEUVILLE M. and GUTTENBERG N.
2020PASP..132e4401Z 17       D               1 81 38 Utilizing small telescopes operated by citizen scientists for transiting Exoplanet follow-up. ZELLEM R.T., PEARSON K.A., BLASER E., et al.
2020AJ....160..108B viz 17       D               1 6855 109 The Gaia-Kepler stellar properties catalog. II. Planet radius demographics as a function of stellar mass and age. BERGER T.A., HUBER D., GAIDOS E., et al.
2020AJ....160..201C viz 17       D               1 31 22 A featureless infrared transmission spectrum for the super-puff planet Kepler-79d. CHACHAN Y., JONTOF-HUTTER D., KNUTSON H.A., et al.
2021MNRAS.503.4092B 17       D               2 124 ~ Revisiting the Kepler field with TESS: Improved ephemerides using TESS 2 min data. BATTLEY M.P., KUNIMOTO M., ARMSTRONG D.J., et al.
2021MNRAS.505.2500P 17       D               1 25 12 In situ formation of hot Jupiters with companion super-Earths. POON S.T.S., NELSON R.P. and COLEMAN G.A.L.
2021MNRAS.508.2620T 44           X         1 10 2 Identifying potential exomoon signals with convolutional neural networks. TEACHEY A. and KIPPING D.
2021ApJ...921...24S viz 17       D               1 328 1 The occurrence-weighted median planets discovered by transit surveys orbiting solar-type stars and their implications for planet formation and evolution. SCHLAUFMAN K.C. and HALPERN N.D.
2021A&A...656A.157B 17       D               1 48 9 Constraining stellar rotation and planetary atmospheric evolution of a dozen systems hosting sub-Neptunes and super-Earths. BONFANTI A., FOSSATI L., KUBYSHKINA D., et al.
2022AJ....164...42J 466       D     X         11 79 3 TESS Observations of Kepler Systems with Transit Timing Variations. JONTOF-HUTTER D., DALBA P.A. and LIVINGSTON J.H.
2023A&A...669A..40O 93           X         2 33 5 HD 191939 revisited: New and refined planet mass determinations, and a new planet in the habitable zone. ORELL-MIQUEL J., NOWAK G., MURGAS F., et al.
2023ApJS..265....4K viz 112       D     X         3 454 2 ExoClock Project. III. 450 New Exoplanet Ephemerides from Ground and Space Observations. KOKORI A., TSIARAS A., EDWARDS B., et al.
2023MNRAS.524.1113S 19       D               1 85 ~ TESS spots a mini- interior to a hot saturn in the TOI-2000 system. SHA L., VANDERBURG A.M., HUANG C.X., et al.
2024ApJS..270....8W 20       D               1 246 ~ The Kepler Giant Planet Search. I. A Decade of Kepler Planet-host Radial Velocities from W. M. Keck Observatory. WEISS L.M., ISAACSON H., HOWARD A.W., et al.

goto View the references in ADS