Kepler-730 , the SIMBAD biblio

Kepler-730 , the SIMBAD biblio (51 results) C.D.S. - SIMBAD4 rel 1.8 - 2024.04.25CEST12:10:02


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2011ApJ...736...19B viz 15       D               1 1507 867 Characteristics of planetary candidates observed by Kepler. II. Analysis of the first four months of data. BORUCKI W.J., KOCH D.G., BASRI G., et al.
2011ApJ...738..170M viz 15       D               1 997 230 On the low false positive probabilities of Kepler planet candidates. MORTON T.D. and JOHNSON J.A.
2011ApJS..197....2F viz 15       D               1 980 66 Transit timing observations from Kepler. I. Statistical analysis of the first four months. FORD E.B., ROWE J.F., FABRYCKY D.C., et al.
2011ApJS..197...12D 15       D               1 124 184 Lack of inflated radii for Kepler giant planet candidates receiving modest stellar irradiation. DEMORY B.-O. and SEAGER S.
2012ApJS..199...24T viz 15       D               1 5394 66 Detection of potential transit signals in the first three quarters of Kepler mission data. TENENBAUM P., CHRISTIANSEN J.L., JENKINS J.M., et al.
2012ApJ...752...53L 15       D               1 320 18 Debris disks in Kepler exoplanet systems. LAWLER S.M. and GLADMAN B.
2012ApJ...752...72D viz 15       D               1 229 7 A correlation between the eclipse depths of Kepler gas giant candidates and the metallicities of their parent stars. DODSON-ROBINSON S.E.
2012ApJ...756..185F viz 15       D               1 1856 44 Transit timing observations from Kepler. V. Transit timing variation candidates in the first sixteen months from polynomial models. FORD E.B., RAGOZZINE D., ROWE J.F., et al.
2012ApJ...756..186S viz 15       D               1 811 35 Transit timing observations from Kepler. VI. Potentially interesting candidate systems from fourier-based statistical tests. STEFFEN J.H., FORD E.B., ROWE J.F., et al.
2013ApJ...775L..11M viz 16       D               1 2010 189 Stellar rotation periods of the Kepler Objects of Interest: a dearth of close-in planets around fast rotators. McQUILLAN A., MAZEH T. and AIGRAIN S.
2013ApJS..208...16M viz 16       D               1 1518 139 Transit timing observations from Kepler. VIII. Catalog of transit timing measurements of the first twelve quarters. MAZEH T., NACHMANI G., HOLCZER T., et al.
2014ApJS..210...19B viz 16       D               1 5860 211 Planetary candidates observed by Kepler IV: planet sample from Q1-Q8 (22 months). BURKE C.J., BRYSON S.T., MULLALLY F., et al.
2014AJ....147..119C viz 16       D               1 8010 91 Contamination in the Kepler field. Identification of 685 KOIs as false positives via ephemeris matching based on Q1-Q12 data. COUGHLIN J.L., THOMPSON S.E., BRYSON S.T., et al.
2015ApJ...801....3M viz 16       D               1 3357 109 Photometric amplitude distribution of stellar rotation of KOIs–Indication for spin-orbit alignment of cool stars and high obliquity for hot stars. MAZEH T., PERETS H.B., McQUILLAN A., et al.
2015ApJS..217...16R viz 16       D               1 8625 149 Planetary candidates observed by Kepler. V. Planet sample from Q1-Q12 (36 months). ROWE J.F., COUGHLIN J.L., ANTOCI V., et al.
2015ApJ...807..170H viz 16       D               1 2117 10 Time variation of Kepler transits induced by stellar Spots–A way to distinguish between prograde and retrograde motion. II. Application to KOIs. HOLCZER T., SHPORER A., MAZEH T., et al.
2015ApJ...809....8B viz 16       D               1 112329 282 Terrestrial planet occurrence rates for the Kepler GK dwarf sample. BURKE C.J., CHRISTIANSEN J.L., MULLALLY F., et al.
2015ApJ...814..130M viz 16       D               1 2846 162 An increase in the mass of planetary systems around lower-mass stars. MULDERS G.D., PASCUCCI I. and APAI D.
2016ApJ...822...86M viz 16       D               1 6130 337 False positive probabilities for all Kepler objects of interest: 1284 newly validated planets and 428 likely false positives. MORTON T.D., BRYSON S.T., COUGHLIN J.L., et al.
2016ApJ...825...98H 16       D               1 166 128 Warm jupiters are less lonely than hot jupiters: close neighbors. HUANG C., WU Y. and TRIAUD A.H.M.J.
2016ApJS..225....9H viz 16       D               1 2132 124 Transit timing observations from Kepler. IX. Catalog of the full long-cadence data set. HOLCZER T., MAZEH T., NACHMANI G., et al.
2017AJ....153...66Z viz 16       D               1 1663 45 Robo-AO Kepler Planetary Candidate Survey. III. Adaptive optics imaging of 1629 Kepler exoplanet candidate host stars. ZIEGLER C., LAW N.M., MORTON T., et al.
2017AJ....153...71F viz 16       D               1 3575 164 The Kepler follow-up observation program. I. A catalog of companions to Kepler stars from high-resolution imaging. FURLAN E., CIARDI D.R., EVERETT M.E., et al.
2017MNRAS.465.2634A viz 16       D               1 5400 21 Transit shapes and self-organizing maps as a tool for ranking planetary candidates: application to Kepler and K2. ARMSTRONG D.J., POLLACCO D. and SANTERNE A.
2017A&A...603A..30S viz 16       D               2 2500 58 Observational evidence for two distinct giant planet populations. SANTOS N.C., ADIBEKYAN V., FIGUEIRA P., et al.
2018ApJ...866...99B viz 16       D               1 7129 233 Revised radii of Kepler stars and planet's using Gaia Data Release 2. BERGER T.A., HUBER D., GAIDOS E., et al.
2019ApJ...870L..17C 1255 T   A D     X C       29 7 8
Kepler-730: a hot Jupiter system with a close-in, transiting, Earth-sized planet.
CANAS C.I., WANG S., MAHADEVAN S., et al.
2019A&A...624A..46L 84           X         2 9 4 Co-orbital exoplanets from close-period candidates: the TOI-178 case. LELEU A., LILLO-BOX J., SESTOVIC M., et al.
2019ApJ...877L..29C 43           X         1 6 6 TOI-150: a transiting hot Jupiter in the TESS southern CVZ. CANAS C.I., STEFANSSON G., MONSON A.J., et al.
2019A&A...631A.152A 17       D               2 121 ~ Dusty phenomena in the vicinity of giant exoplanets. ARKHYPOV O.V., KHODACHENKO M.L. and HANSLMEIER A.
2020ApJ...890...23L viz 17       D               2 4935 35 Current population statistics do not favor photoevaporation over core-powered mass loss as the dominant cause of the exoplanet radius gap. LOYD R.O.P., SHKOLNIK E.L., SCHNEIDER A.C., et al.
2020ApJ...892L...7H 217           X         5 9 39 TESS spots a hot Jupiter with an inner transiting Neptune. HUANG C.X., QUINN S.N., VANDERBURG A., et al.
2020A&A...636A..98C viz 44           X         1 14 27 TraMoS. V. Updated ephemeris and multi-epoch monitoring of the hot Jupiters WASP-18Ab, WASP-19b, and WASP-77Ab. CORTES-ZULETA P., ROJO P., WANG S., et al.
2020PASP..132a4401M 43           X         1 9 ~ K2 looks toward WASP-28 and WASP-151. MOCNIK T., HELLIER C. and ANDERSON D.R.
2020AJ....160..108B viz 17       D               2 6855 109 The Gaia-Kepler stellar properties catalog. II. Planet radius demographics as a function of stellar mass and age. BERGER T.A., HUBER D., GAIDOS E., et al.
2020AJ....160..120J viz 17       D               1 365761 238 APOGEE data and spectral analysis from SDSS Data Release 16: seven years of observations including first results from APOGEE-South. JONSSON H., HOLTZMAN J.A., ALLENDE PRIETO C., et al.
2021MNRAS.505.2500P 1175     A D     X C F     26 25 12 In situ formation of hot Jupiters with companion super-Earths. POON S.T.S., NELSON R.P. and COLEMAN G.A.L.
2021ApJS..255...15W 44           X         1 82 15 Transiting exoplanet monitoring project (TEMP). VI. The homogeneous refinement of system parameters for 39 transiting hot Jupiters with 127 new light curves. WANG X.-Y., WANG Y.-H., WANG S., et al.
2021AJ....162..263H viz 87           X         2 346 17 A uniform search for nearby planetary companions to hot Jupiters in TESS data reveals hot Jupiters are still lonely. HORD B.J., COLON K.D., KOSTOV V., et al.
2021A&A...656A..88M viz 44           X         1 7 ~ Revisiting TrES-5 b: departure from a linear ephemeris instead of short-period transit timing variation. MACIEJEWSKI G., FERNANDEZ M., ACEITUNO F., et al.
2022AJ....163..128W viz 18       D               1 1570 6 The influence of 10 unique chemical elements in shaping the distribution of Kepler planets. WILSON R.F., CANAS C.I., MAJEWSKI S.R., et al.
2022ApJ...926L...8W viz 46           X         1 15 20 The Aligned Orbit of WASP-148b, the Only Known Hot Jupiter with a nearby Warm Jupiter Companion, from NEID and HIRES. WANG X.-Y., RICE M., WANG S., et al.
2022AJ....164...13H 224           X C       4 11 10 The Discovery of a Planetary Companion Interior to Hot Jupiter WASP-132 b. HORD B.J., COLON K.D., BERGER T.A., et al.
2023AJ....165..171W 47           X         1 42 7 Evidence for Hidden Nearby Companions to Hot Jupiters. WU D.-H., RICE M. and WANG S.
2023A&A...673A..42N 47           X         1 15 2 A new dynamical modeling of the WASP-47 system with CHEOPS observations. NASCIMBENI V., BORSATO L., ZINGALES T., et al.
2023MNRAS.524.1113S 19       D               2 85 ~ TESS spots a mini- interior to a hot saturn in the TOI-2000 system. SHA L., VANDERBURG A.M., HUANG C.X., et al.
2023A&A...675A.115K viz 93           X         2 24 ~ TOI-1130: A photodynamical analysis of a hot Jupiter in resonance with an inner low-mass planet. KORTH J., GANDOLFI D., SUBJAK J., et al.
2023MNRAS.525L..43M viz 47           X         1 13 ~ A hot super-Earth planet in the WASP-84 planetary system. MACIEJEWSKI G., GOLONKA J., LOBODA W., et al.
2023ApJ...956L..29Z 47           X         1 5 ~ Hot Jupiters Have Giant Companions: Evidence for Coplanar High-eccentricity Migration. ZINK J.K. and HOWARD A.W.
2023AJ....166..267W 47           X         1 4 ~ Hot Jupiters from Disruption of Resonant Chains in Postdisk Evolution. WU D.-H. and HE Y.
2024A&A...682A.129M viz 200     A D     X         5 21 ~ The GAPS programme at TNG XLIX. TOI-5398, the youngest compact multi-planet system composed of an inner sub-Neptune and an outer warm Saturn. MANTOVAN G., MALAVOLTA L., DESIDERA S., et al.

goto View the references in ADS