Kepler-221 , the SIMBAD biblio

Kepler-221 , the SIMBAD biblio (74 results) C.D.S. - SIMBAD4 rel 1.8 - 2024.04.19CEST00:23:03


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2011ApJ...736...19B viz 15       D               1 1507 867 Characteristics of planetary candidates observed by Kepler. II. Analysis of the first four months of data. BORUCKI W.J., KOCH D.G., BASRI G., et al.
2011ApJ...738..170M viz 15       D               1 997 230 On the low false positive probabilities of Kepler planet candidates. MORTON T.D. and JOHNSON J.A.
2011ApJS..197....2F viz 15       D               1 980 66 Transit timing observations from Kepler. I. Statistical analysis of the first four months. FORD E.B., ROWE J.F., FABRYCKY D.C., et al.
2012ApJS..199...24T viz 15       D               1 5394 66 Detection of potential transit signals in the first three quarters of Kepler mission data. TENENBAUM P., CHRISTIANSEN J.L., JENKINS J.M., et al.
2012ApJ...756..185F viz 15       D               4 1856 44 Transit timing observations from Kepler. V. Transit timing variation candidates in the first sixteen months from polynomial models. FORD E.B., RAGOZZINE D., ROWE J.F., et al.
2012ApJ...756..186S viz 15       D               4 811 35 Transit timing observations from Kepler. VI. Potentially interesting candidate systems from fourier-based statistical tests. STEFFEN J.H., FORD E.B., ROWE J.F., et al.
2013ApJ...763...41C viz 16       D               3 97 40 On the relative sizes of planets within Kepler multiple-candidate systems. CIARDI D.R., FABRYCKY D.C., FORD E.B., et al.
2013ApJS..204...24B viz 16       D               1 3274 922 Planetary candidates observed by Kepler. III. Analysis of the first 16 months of data. BATALHA N.M., ROWE J.F., BRYSON S.T., et al.
2013ApJ...774L..12S viz 16       D               1 469 25 A lack of short-period multiplanet systems with close-proximity pairs and the curious case of Kepler-42. STEFFEN J.H. and FARR W.M.
2013ApJ...774...52L 40           X         1 18 43 Are the Kepler near-resonance planet pairs due to tidal dissipation? LEE M.H., FABRYCKY D. and LIN D.N.C.
2013ApJ...775L..11M viz 16       D               1 2010 189 Stellar rotation periods of the Kepler Objects of Interest: a dearth of close-in planets around fast rotators. McQUILLAN A., MAZEH T. and AIGRAIN S.
2013ApJS..208...16M viz 16       D               4 1518 139 Transit timing observations from Kepler. VIII. Catalog of transit timing measurements of the first twelve quarters. MAZEH T., NACHMANI G., HOLCZER T., et al.
2013MNRAS.435.1126B 94       D     X         3 72 20 Exoplanet predictions based on the generalized Titius-Bode relation. BOVAIRD T. and LINEWEAVER C.H.
2013MNRAS.436.1883W viz 16       D               1 961 136 Rotation periods, variability properties and ages for Kepler exoplanet candidate host stars. WALKOWICZ L.M. and BASRI G.S.
2013A&A...560A...4R viz 16       D               1 24132 291 Rotation and differential rotation of active Kepler stars. REINHOLD T., REINERS A. and BASRI G.
2014ApJS..210...19B viz 16       D               4 5860 211 Planetary candidates observed by Kepler IV: planet sample from Q1-Q8 (22 months). BURKE C.J., BRYSON S.T., MULLALLY F., et al.
2014ApJ...783....9H 16       D               2 35 37 Measurements of stellar inclinations for Kepler planet candidates. II. Candidate spin-orbit misalignments in single- and multiple-transiting systems. HIRANO T., SANCHIS-OJEDA R., TAKEDA Y., et al.
2014ApJ...784...45R viz 16       D               1 1691 388 Validation of Kepler's multiple planet candidates. III. Light curve analysis and announcement of hundreds of new multi-planet systems. ROWE J.F., BRYSON S.T., MARCY G.W., et al.
2014AJ....147..119C viz 16       D               1 8010 91 Contamination in the Kepler field. Identification of 685 KOIs as false positives via ephemeris matching based on Q1-Q12 data. COUGHLIN J.L., THOMPSON S.E., BRYSON S.T., et al.
2014ApJ...787...80H viz 16       D               1 261 190 Densities and eccentricities of 139 Kepler planets from transit time variations. HADDEN S. and LITHWICK Y.
2014ApJ...790..146F viz 79           X         2 918 579 Architecture of Kepler's multi-transiting systems. II. New investigations with twice as many candidates. FABRYCKY D.C., LISSAUER J.J., RAGOZZINE D., et al.
2014AJ....148...78D 330       D S   X         8 111 35 Adaptive optics images. III. 87 Kepler objects of interest. DRESSING C.D., ADAMS E.R., DUPREE A.K., et al.
2014ApJ...796...47M 16       D               1 76 96 Obliquities of Kepler stars: comparison of single- and multiple-transit systems. MORTON T.D. and WINN J.N.
2015ApJ...801....3M viz 16       D               1 3357 109 Photometric amplitude distribution of stellar rotation of KOIs–Indication for spin-orbit alignment of cool stars and high obliquity for hot stars. MAZEH T., PERETS H.B., McQUILLAN A., et al.
2015ApJS..217...16R viz 16       D               1 8625 149 Planetary candidates observed by Kepler. V. Planet sample from Q1-Q12 (36 months). ROWE J.F., COUGHLIN J.L., ANTOCI V., et al.
2015MNRAS.448.3608B viz 16       D               2 156 6 Using the inclinations of Kepler systems to prioritize new Titius-Bode-based exoplanet predictions. BOVAIRD T., LINEWEAVER C.H. and JACOBSEN S.K.
2015ApJ...807..170H viz 16       D               4 2117 10 Time variation of Kepler transits induced by stellar Spots–A way to distinguish between prograde and retrograde motion. II. Application to KOIs. HOLCZER T., SHPORER A., MAZEH T., et al.
2015ApJ...809....8B viz 16       D               1 112329 282 Terrestrial planet occurrence rates for the Kepler GK dwarf sample. BURKE C.J., CHRISTIANSEN J.L., MULLALLY F., et al.
2015ApJ...813..100O viz 16       D               1 327 7 Deep GALEX UV survey of the Kepler field. I. Point source catalog. OLMEDO M., LLOYD J., MAMAJEK E.E., et al.
2015MNRAS.453.4089S 175       D     X         5 103 3 Tides alone cannot explain Kepler planets close to 2:1 MMR. SILBURT A. and REIN H.
2015ApJ...814..130M viz 16       D               4 2846 162 An increase in the mass of planetary systems around lower-mass stars. MULDERS G.D., PASCUCCI I. and APAI D.
2016MNRAS.455.2980B 16       D               4 52 19 Oscillations of relative inclination angles in compact extrasolar planetary systems. BECKER J.C. and ADAMS F.C.
2016ApJ...821...47B viz 16       D               1 217 14 Efficient geometric probabilities of multi-transiting exoplanetary systems from CORBITS. BRAKENSIEK J. and RAGOZZINE D.
2016ApJ...822...86M viz 16       D               1 6130 337 False positive probabilities for all Kepler objects of interest: 1284 newly validated planets and 428 likely false positives. MORTON T.D., BRYSON S.T., COUGHLIN J.L., et al.
2016MNRAS.457.2480C 81           X         2 16 31 On the formation of compact planetary systems via concurrent core accretion and migration. COLEMAN G.A.L. and NELSON R.P.
2016ApJS..225....9H viz 16       D               4 2132 124 Transit timing observations from Kepler. IX. Catalog of the full long-cadence data set. HOLCZER T., MAZEH T., NACHMANI G., et al.
2016A&A...594A..39F viz 16       D               1 51408 86 Activity indicators and stellar parameters of the Kepler targets. An application of the ROTFIT pipeline to LAMOST-Kepler stellar spectra. FRASCA A., MOLENDA-ZAKOWICZ J., DE CAT P., et al.
2016AJ....152..187M viz 16       D               4 471 74 A super-solar metallicity for stars with hot rocky exoplanets. MULDERS G.D., PASCUCCI I., APAI D., et al.
2017AJ....153...71F viz 16       D               1 3575 164 The Kepler follow-up observation program. I. A catalog of companions to Kepler stars from high-resolution imaging. FURLAN E., CIARDI D.R., EVERETT M.E., et al.
2017AJ....153..180S 16       D               2 119 3 A search for lost planets in the Kepler multi-planet systems and the discovery of the long-period, Neptune-sized exoplanet Kepler-150 f. SCHMITT J.R., JENKINS J.M. and FISCHER D.A.
2017MNRAS.465.2634A viz 16       D               4 5400 21 Transit shapes and self-organizing maps as a tool for ranking planetary candidates: application to Kepler and K2. ARMSTRONG D.J., POLLACCO D. and SANTERNE A.
2017A&A...602A.101R 41           X         1 69 10 Planetary migration and the origin of the 2:1 and 3:2 (near)-resonant population of close-in exoplanets. RAMOS X.S., CHARALAMBOUS C., BENITEZ-LLAMBAY P., et al.
2017AJ....154..107P viz 16       D               1 1306 226 The California-Kepler Survey. I. High-resolution spectroscopy of 1305 stars hosting Kepler transiting planets. PETIGURA E.A., HOWARD A.W., MARCY G.W., et al.
2017AJ....154..108J viz 16       D               1 3237 137 The California-Kepler Survey. II. Precise physical properties of 2025 Kepler planets and their host stars. JOHNSON J.A., PETIGURA E.A., FULTON B.J., et al.
2017A&A...603A..30S viz 16       D               8 2500 58 Observational evidence for two distinct giant planet populations. SANTOS N.C., ADIBEKYAN V., FIGUEIRA P., et al.
2017NewA...55....1H 16       D               1 146 2 Multiple planetary systems: properties of the current sample. HOBSON M.J. and GOMEZ M.
2017AJ....154..270W 16       D               2 70 21 Constraints on the obliquities of Kepler planet-hosting stars. WINN J.N., PETIGURA E.A., MORTON T.D., et al.
2018ApJS..234....9O viz 16       D               1 436 14 A spectral approach to transit timing variations. OFIR A., XIE J.-W., JIANG C.-F., et al.
2018ApJ...855..115B viz 16       D               3 1305 5 Identifying young Kepler planet host stars from Keck-HIRES spectra of lithium. BERGER T.A., HOWARD A.W. and BOESGAARD A.M.
2018MNRAS.474.2094A viz 16       D               1 1073 143 Inferring probabilistic stellar rotation periods using Gaussian processes. ANGUS R., MORTON T., AIGRAIN S., et al.
2018AJ....155..161Z viz 41           X         1 1274 24 Robo-AO Kepler survey. IV. The effect of nearby stars on 3857 planetary candidate systems. ZIEGLER C., LAW N.M., BARANEC C., et al.
2018ApJS..237...38B viz 16       D               1 1111 42 Spectral properties of cool stars: extended abundance analysis of Kepler Objects of Interest. BREWER J.M. and FISCHER D.A.
2018ApJ...866...99B viz 16       D               1 7129 233 Revised radii of Kepler stars and planet's using Gaia Data Release 2. BERGER T.A., HUBER D., GAIDOS E., et al.
2018AJ....156..292T viz 16       D               1 647 8 The effects of stellar companions on the observed transiting exoplanet radius distribution. TESKE J.K., CIARDI D.R., HOWELL S.B., et al.
2019ApJ...875...29M viz 17       D               1 2918 72 A spectroscopic analysis of the California-Kepler Survey sample. I. Stellar parameters, planetary radii, and a slope in the radius gap. MARTINEZ C.F., CUNHA K., GHEZZI L., et al.
2020ApJ...890...23L viz 17       D               4 4935 35 Current population statistics do not favor photoevaporation over core-powered mass loss as the dominant cause of the exoplanet radius gap. LOYD R.O.P., SHKOLNIK E.L., SCHNEIDER A.C., et al.
2020ApJ...890L..31L viz 17       D               1 85 ~ Mutual inclination excitation by stellar oblateness. LI G., DAI F. and BECKER J.
2020ApJ...893L...1W 85               F     1 51 33 The Kepler peas in a pod pattern is astrophysical. WEISS L.M. and PETIGURA E.A.
2020AJ....159..207B 17       D               1 150 ~ Transit duration variations in multiplanet systems. BOLEY A.C., VAN LAERHOVEN C. and GRANADOS CONTRERAS A.P.
2020AJ....160..108B viz 17       D               4 6855 109 The Gaia-Kepler stellar properties catalog. II. Planet radius demographics as a function of stellar mass and age. BERGER T.A., HUBER D., GAIDOS E., et al.
2021ApJ...909..115C viz 17       D               1 2175 13 Planets Across Space and Time (PAST). I. Characterizing the memberships of Galactic components and stellar ages: revisiting the kinematic methods and applying to planet host stars. CHEN D.-C., XIE J.-W., ZHOU J.-L., et al.
2020PASJ...72...24L 17       D               1 90 ~ The reliability of the Titius-Bode relation and its implications for the search for exoplanets. LARA P., CORDERO-TERCERO G. and ALLEN C.
2021AJ....162...16G 2525 T   A D S   X C       56 16 ~ A tidal origin for a three-body resonance in
Kepler-221.
GOLDBERG M. and BATYGIN K.
2021AJ....162...98B viz 17       D               1 2175 ~ Seeking echoes of circumstellar disks in Kepler light curves. BROMLEY B.C., LEONARD A., QUINTANILLA A., et al.
2021ApJ...920...19G viz 17       D               1 807 5 A spectroscopic analysis of the California-Kepler Survey sample. II. Correlations of stellar metallicities with planetary architectures. GHEZZI L., MARTINEZ C.F., WILSON R.F., et al.
2021ApJ...920L..34M 87               F     1 48 16 Split peas in a pod: intra-system uniformity of super-Earths and sub-Neptunes. MILLHOLLAND S.C. and WINN J.N.
2022MNRAS.511.3814H 46           X         1 11 14 The dynamics of the TRAPPIST-1 system in the context of its formation. HUANG S. and ORMEL C.W.
2022AJ....164...72M 90               F     1 61 6 Edge-of-the-Multis: Evidence for a Transition in the Outer Architectures of Compact Multiplanet Systems. MILLHOLLAND S.C., HE M.Y. and ZINK J.K.
2022ApJS..261...26S viz 18       D               4 1893 2 Magnetic Activity and Physical Parameters of Exoplanet Host Stars Based on LAMOST DR7, TESS, Kepler, and K2 Surveys. SU T., ZHANG L.-Y., LONG L., et al.
2023AJ....165...33D 513           X         11 26 9 TOI-1136 is a Young, Coplanar, Aligned Planetary System in a Pristine Resonant Chain. DAI F., MASUDA K., BEARD C., et al.
2023AJ....165...89W 47           X         1 17 1 Kepler-80 Revisited: Assessing the Participation of a Newly Discovered Planet in the Resonant Chain. WEISSERMAN D., BECKER J.C. and VANDERBURG A.
2023ApJ...954..137S 93               F     1 64 ~ Can Cold Jupiters Sculpt the Edge-of-the-multis? SOBSKI N. and MILLHOLLAND S.C.
2023A&A...677A.160C 93           X         2 40 ~ Tidal interactions shape period ratios in planetary systems with three-body resonant chains. CHARALAMBOUS C., TEYSSANDIER J. and LIBERT A.-S.
2024AJ....167..103J 150           X         3 190 ~ Kepler Multitransiting System Physical Properties and Impact Parameter Variations. JUDKOVSKY Y., OFIR A. and AHARONSON O.

goto View the references in ADS