Kepler-1625 , the SIMBAD biblio

Kepler-1625 , the SIMBAD biblio (48 results) C.D.S. - SIMBAD4 rel 1.8 - 2024.04.25CEST02:28:41


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2013ApJ...776...10W 16       D               1 50 35 Planet hunters. V. A confirmed jupiter-size planet in the habitable zone and 42 planet candidates from the Kepler archive data. WANG J., FISCHER D.A., BARCLAY T., et al.
2015ApJ...801....3M viz 16       D               1 3357 109 Photometric amplitude distribution of stellar rotation of KOIs–Indication for spin-orbit alignment of cool stars and high obliquity for hot stars. MAZEH T., PERETS H.B., McQUILLAN A., et al.
2015ApJ...807..170H viz 16       D               1 2117 10 Time variation of Kepler transits induced by stellar Spots–A way to distinguish between prograde and retrograde motion. II. Application to KOIs. HOLCZER T., SHPORER A., MAZEH T., et al.
2015ApJ...809....8B viz 16       D               1 112329 282 Terrestrial planet occurrence rates for the Kepler GK dwarf sample. BURKE C.J., CHRISTIANSEN J.L., MULLALLY F., et al.
2015ApJ...814..130M viz 16       D               1 2846 162 An increase in the mass of planetary systems around lower-mass stars. MULDERS G.D., PASCUCCI I. and APAI D.
2016ApJ...822...86M viz 16       D               1 6130 337 False positive probabilities for all Kepler objects of interest: 1284 newly validated planets and 428 likely false positives. MORTON T.D., BRYSON S.T., COUGHLIN J.L., et al.
2016ApJS..225....9H viz 16       D               2 2132 124 Transit timing observations from Kepler. IX. Catalog of the full long-cadence data set. HOLCZER T., MAZEH T., NACHMANI G., et al.
2017AJ....153...66Z viz 16       D               1 1663 45 Robo-AO Kepler Planetary Candidate Survey. III. Adaptive optics imaging of 1629 Kepler exoplanet candidate host stars. ZIEGLER C., LAW N.M., MORTON T., et al.
2017AJ....153...71F viz 16       D               1 3575 164 The Kepler follow-up observation program. I. A catalog of companions to Kepler stars from high-resolution imaging. FURLAN E., CIARDI D.R., EVERETT M.E., et al.
2017MNRAS.465.2634A viz 16       D               1 5400 21 Transit shapes and self-organizing maps as a tool for ranking planetary candidates: application to Kepler and K2. ARMSTRONG D.J., POLLACCO D. and SANTERNE A.
2016PASP..128g4502M viz 16       D               1 305 14 Identifying false alarms in the Kepler planet candidate catalog. MULLALLY F., COUGHLIN J.L., THOMPSON S.E., et al.
2017AJ....154..107P viz 16       D               1 1306 226 The California-Kepler Survey. I. High-resolution spectroscopy of 1305 stars hosting Kepler transiting planets. PETIGURA E.A., HOWARD A.W., MARCY G.W., et al.
2017AJ....154..108J viz 16       D               1 3237 137 The California-Kepler Survey. II. Precise physical properties of 2025 Kepler planets and their host stars. JOHNSON J.A., PETIGURA E.A., FULTON B.J., et al.
2017A&A...603A..30S viz 16       D               2 2500 58 Observational evidence for two distinct giant planet populations. SANTOS N.C., ADIBEKYAN V., FIGUEIRA P., et al.
2018AJ....155...36T 98           X         2 5 82 HEK. VI. On the dearth of Galilean analogs in Kepler, and the exomoon candidate Kepler-1625b I. TEACHEY A., KIPPING D.M. and SCHMITT A.R.
2018ApJ...855..115B viz 16       D               1 1305 5 Identifying young Kepler planet host stars from Keck-HIRES spectra of lithium. BERGER T.A., HOWARD A.W. and BOESGAARD A.M.
2018A&A...610A..39H 166           X         4 9 14 The nature of the giant exomoon candidate Kepler-1625 b-i. HELLER R.
2018MNRAS.474.2094A viz 16       D               1 1073 143 Inferring probabilistic stellar rotation periods using Gaussian processes. ANGUS R., MORTON T., AIGRAIN S., et al.
2018ApJ...861..149F viz 16       D               1 2261 6 The Kepler Follow-up Observation Program. II. Stellar parameters from medium- and high-resolution spectroscopy. FURLAN E., CIARDI D.R., COCHRAN W.D., et al.
2018A&A...617A..49R 459           X C       10 2 12 Revisiting the exomoon candidate signal around Kepler-1625 b. RODENBECK K., HELLER R., HIPPKE M., et al.
2018ApJ...866...99B viz 16       D               1 7129 233 Revised radii of Kepler stars and planet's using Gaia Data Release 2. BERGER T.A., HUBER D., GAIDOS E., et al.
2018ApJ...869L..27H 355     A     X C       8 2 3 Catching a planet: a tidal capture origin for the oxomoon candidate
Kepler 1625b I.
HAMERS A.S. and PORTEGIES ZWART S.F.
2019MNRAS.483.3919V 42           X         1 7 1 Explicit relations and criteria for eclipses, transits, and occultations. VERAS D.
2019ApJ...875...29M viz 17       D               1 2918 72 A spectroscopic analysis of the California-Kepler Survey sample. I. Stellar parameters, planetary radii, and a slope in the radius gap. MARTINEZ C.F., CUNHA K., GHEZZI L., et al.
2019ApJ...875L..25M 486 T   A     X C       10 2 3 Transits of inclined exomoons-hide and seek and an application to
Kepler-1625.
MARTIN D.V., FABRYCKY D.C. and MONTET B.T.
2019A&A...624A..95H 590 T         X C       12 2 11 An alternative interpretation of the exomoon candidate signal in the combined Kepler and Hubble data of
Kepler-1625.
HELLER R., RODENBECK K. and BRUNO G.
2019A&A...624A.120V 48           X         1 7 48 Survivability of planetary systems in young and dense star clusters. VAN ELTEREN A., PORTEGIES ZWART S., PELUPESSY I., et al.
2019ApJ...877L..15K 280 T   A     X         6 2 9 No evidence for lunar transit in new analysis of Hubble Space Telescope Observations of the
Kepler-1625 system.
KREIDBERG L., LUGER R. and BEDELL M.
2019ApJ...885..168O 42           X         1 40 31 Sodium and potassium signatures of volcanic satellites orbiting close-in gas giant exoplanets. OZA A.V., JOHNSON R.E., LELLOUCH E., et al.
2020ApJ...890...23L viz 17       D               1 4935 35 Current population statistics do not favor photoevaporation over core-powered mass loss as the dominant cause of the exoplanet radius gap. LOYD R.O.P., SHKOLNIK E.L., SCHNEIDER A.C., et al.
2020AJ....159..131P 44           X         1 14 26 Exploring whether super-puffs can be explained as ringed exoplanets. PIRO A.L. and VISSAPRAGADA S.
2020AJ....159..142T 766     A D     X C       18 4 ~ Loose ends for the exomoon candidate host
Kepler-1625b.
TEACHEY A., KIPPING D., BURKE C.J., et al.
2020A&A...635A..59T 834     A     X C       19 3 ~ Radial velocity constraints on the long-period transiting planet
Kepler-1625 b with CARMENES.
TIMMERMANN A., HELLER R., REINERS A., et al.
2020A&A...635A.191M 17       D               2 42 ~ Spatial distribution of exoplanet candidates based on Kepler and Gaia data. MALIUK A. and BUDAJ J.
2020AJ....159..260R 391       S   X C       7 2 16 Orbital stability of exomoons and submoons with applications to Kepler 1625b-I. ROSARIO-FRANCO M., QUARLES B., MUSIELAK Z.E., et al.
2020MNRAS.495.3763M 621     A     X C       14 4 ~ Exploring formation scenarios for the exomoon candidate
Kepler 1625b I.
MORAES R.A. and VIEIRA NETO E.
2020AJ....160..108B viz 17       D               1 6855 109 The Gaia-Kepler stellar properties catalog. II. Planet radius demographics as a function of stellar mass and age. BERGER T.A., HUBER D., GAIDOS E., et al.
2020AJ....160..194T 85             C       1 39 ~ Impact of tides on the potential for exoplanets to host exomoons. TOKADJIAN A. and PIRO A.L.
2021MNRAS.501.2378F 87           X         2 27 ~ Exomoon candidates from transit timing variations: eightKeplersystems with TTVs explainable by photometrically unseen exomoons. FOX C. and WIEGERT P.
2021MNRAS.501.5309H viz 17       D               1 543 ~ Confirming known planetary trends using a photometrically selected Kepler sample. HANSEN J.T., CASAGRANDE L., IRELAND M.J., et al.
2021ApJ...920...19G viz 17       D               1 807 5 A spectroscopic analysis of the California-Kepler Survey sample. II. Correlations of stellar metallicities with planetary architectures. GHEZZI L., MARTINEZ C.F., WILSON R.F., et al.
2022MNRAS.510.2583M 90           X         2 2 ~ On the stability of additional moons orbiting Kepler-1625 b. MORAES R.A., BORDERES-MOTTA G., WINTER O.C., et al.
2022MNRAS.512.1032S 18       D               1 4 3 Cronomoons: origin, dynamics, and light-curve features of ringed exomoons. SUCERQUIA M., ALVARADO-MONTES J.A., BAYO A., et al.
2022ApJ...929L...2T 179       S   X         3 4 3 Probing Planets with Exomoons: The Cases of Kepler-1708 b and Kepler-1625 b. TOKADJIAN A. and PIRO A.L.
2022NatAs...6..367K viz 90             C       1 35 26 An exomoon survey of 70 cool giant exoplanets and the new candidate Kepler-1708 b-i. KIPPING D., BRYSON S., BURKE C., et al.
2022A&A...662A..37H 46           X         1 3 4 Pandora: A fast open-source exomoon transit detection algorithm. HIPPKE M. and HELLER R.
2023MNRAS.520.2163M 2351       D S   X C       49 5 ~ The dynamics of co-orbital giant exomoons - applications for the Kepler-1625 b and Kepler-1708 b satellite systems. MORAES R.A., BORDERES-MOTTA G., WINTER O.C., et al.
2024NatAs...8..193H 350           X         7 6 ~ Large exomoons unlikely around Kepler-1625 b and Kepler-1708 b. HELLER R. and HIPPKE M.

goto View the references in ADS