Kepler-1505 , the SIMBAD biblio

Kepler-1505 , the SIMBAD biblio (36 results) C.D.S. - SIMBAD4 rel 1.8 - 2024.04.25CEST15:44:33


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2014AJ....147..119C viz 16       D               1 8010 91 Contamination in the Kepler field. Identification of 685 KOIs as false positives via ephemeris matching based on Q1-Q12 data. COUGHLIN J.L., THOMPSON S.E., BRYSON S.T., et al.
2014ApJ...788L...9B viz 16       D               1 293 26 Larger planet radii inferred from stellar "flicker" brightness variations of bright planet-host stars. BASTIEN F.A., STASSUN K.G. and PEPPER J.
2014AJ....148..108B 16       D               4 129 5 A technique to derive improved proper motions for Kepler Objects of Interest. BENEDICT G.F., TANNER A.M., CARGILE P.A., et al.
2015ApJ...801....3M viz 16       D               1 3357 109 Photometric amplitude distribution of stellar rotation of KOIs–Indication for spin-orbit alignment of cool stars and high obliquity for hot stars. MAZEH T., PERETS H.B., McQUILLAN A., et al.
2015ApJS..217...16R viz 16       D               1 8625 149 Planetary candidates observed by Kepler. V. Planet sample from Q1-Q12 (36 months). ROWE J.F., COUGHLIN J.L., ANTOCI V., et al.
2015ApJ...807..170H viz 16       D               1 2117 10 Time variation of Kepler transits induced by stellar Spots–A way to distinguish between prograde and retrograde motion. II. Application to KOIs. HOLCZER T., SHPORER A., MAZEH T., et al.
2015ApJ...809....8B viz 16       D               1 112329 282 Terrestrial planet occurrence rates for the Kepler GK dwarf sample. BURKE C.J., CHRISTIANSEN J.L., MULLALLY F., et al.
2015ApJ...814...91B viz 16       D               1 524 24 Comparative habitability of transiting exoplanets. BARNES R., MEADOWS V.S. and EVANS N.
2015ApJ...814..130M viz 16       D               2 2846 162 An increase in the mass of planetary systems around lower-mass stars. MULDERS G.D., PASCUCCI I. and APAI D.
2016ApJ...822...86M viz 16       D               1 6130 337 False positive probabilities for all Kepler objects of interest: 1284 newly validated planets and 428 likely false positives. MORTON T.D., BRYSON S.T., COUGHLIN J.L., et al.
2016ApJS..225....9H viz 16       D               1 2132 124 Transit timing observations from Kepler. IX. Catalog of the full long-cadence data set. HOLCZER T., MAZEH T., NACHMANI G., et al.
2016A&A...594A..39F viz 16       D               1 51408 86 Activity indicators and stellar parameters of the Kepler targets. An application of the ROTFIT pipeline to LAMOST-Kepler stellar spectra. FRASCA A., MOLENDA-ZAKOWICZ J., DE CAT P., et al.
2016AJ....152..187M viz 16       D               2 471 74 A super-solar metallicity for stars with hot rocky exoplanets. MULDERS G.D., PASCUCCI I., APAI D., et al.
2017AJ....153...71F viz 16       D               1 3575 164 The Kepler follow-up observation program. I. A catalog of companions to Kepler stars from high-resolution imaging. FURLAN E., CIARDI D.R., EVERETT M.E., et al.
2017AJ....153..117H viz 16       D               1 170 51 Assessing the effect of stellar companions from high-resolution imaging of Kepler Objects of Interest. HIRSCH L.A., CIARDI D.R., HOWARD A.W., et al.
2017MNRAS.465.2634A viz 16       D               2 5400 21 Transit shapes and self-organizing maps as a tool for ranking planetary candidates: application to Kepler and K2. ARMSTRONG D.J., POLLACCO D. and SANTERNE A.
2017AJ....154..107P viz 16       D               1 1306 226 The California-Kepler Survey. I. High-resolution spectroscopy of 1305 stars hosting Kepler transiting planets. PETIGURA E.A., HOWARD A.W., MARCY G.W., et al.
2017AJ....154..108J viz 16       D               1 3237 137 The California-Kepler Survey. II. Precise physical properties of 2025 Kepler planets and their host stars. JOHNSON J.A., PETIGURA E.A., FULTON B.J., et al.
2017A&A...603A..30S viz 16       D               2 2500 58 Observational evidence for two distinct giant planet populations. SANTOS N.C., ADIBEKYAN V., FIGUEIRA P., et al.
2018ApJ...855..115B viz 16       D               1 1305 5 Identifying young Kepler planet host stars from Keck-HIRES spectra of lithium. BERGER T.A., HOWARD A.W. and BOESGAARD A.M.
2018MNRAS.474.2094A viz 16       D               1 1073 143 Inferring probabilistic stellar rotation periods using Gaussian processes. ANGUS R., MORTON T., AIGRAIN S., et al.
2018ApJ...861..149F viz 16       D               1 2261 6 The Kepler Follow-up Observation Program. II. Stellar parameters from medium- and high-resolution spectroscopy. FURLAN E., CIARDI D.R., COCHRAN W.D., et al.
2018ApJS..237...38B viz 16       D               1 1111 42 Spectral properties of cool stars: extended abundance analysis of Kepler Objects of Interest. BREWER J.M. and FISCHER D.A.
2018ApJ...866...99B viz 16       D               1 7129 233 Revised radii of Kepler stars and planet's using Gaia Data Release 2. BERGER T.A., HUBER D., GAIDOS E., et al.
2018AJ....156..292T viz 16       D               1 647 8 The effects of stellar companions on the observed transiting exoplanet radius distribution. TESKE J.K., CIARDI D.R., HOWELL S.B., et al.
2019AJ....157..143B viz 17       D               1 423 5 Re-evaluating small long-period confirmed planets from Kepler. BURKE C.J., MULLALLY F., THOMPSON S.E., et al.
2019ApJ...875...29M viz 17       D               1 2918 72 A spectroscopic analysis of the California-Kepler Survey sample. I. Stellar parameters, planetary radii, and a slope in the radius gap. MARTINEZ C.F., CUNHA K., GHEZZI L., et al.
2019ApJ...879...69T viz 17       D               1 222609 141 The Payne: self-consistent ab initio fitting of stellar spectra. TING Y.-S., CONROY C., RIX H.-W., et al.
2020ApJ...890...23L viz 17       D               2 4935 35 Current population statistics do not favor photoevaporation over core-powered mass loss as the dominant cause of the exoplanet radius gap. LOYD R.O.P., SHKOLNIK E.L., SCHNEIDER A.C., et al.
2021ApJ...919..138T viz 104       D       C       2 531 12 Further evidence for tidal spin-up of hot Jupiter host stars. TEJADA AREVALO R.A., WINN J.N. and ANDERSON K.R.
2022AJ....163..128W viz 18       D               1 1570 6 The influence of 10 unique chemical elements in shaping the distribution of Kepler planets. WILSON R.F., CANAS C.I., MAJEWSKI S.R., et al.
2022ApJS..261...26S viz 18       D               3 1893 2 Magnetic Activity and Physical Parameters of Exoplanet Host Stars Based on LAMOST DR7, TESS, Kepler, and K2 Surveys. SU T., ZHANG L.-Y., LONG L., et al.
2022AJ....164..138S 45           X         1 32 1 Revising Properties of Planet-Host Binary Systems. II. Apparent Near-Earth-analog Planets in Binaries Are Often Sub-Neptunes. SULLIVAN K. and KRAUS A.L.
2023ApJ...946...61L 140           X         3 39 ~ A Spectroscopic Analysis of a Sample of K2 Planet-host Stars: Stellar Parameters, Metallicities and Planetary Radii. LOAIZA-TACURI V., CUNHA K., SMITH V.V., et al.
2023A&A...675A.114C 93               F     1 25 ~ Chasing extreme planetary architectures I. HD 196885 Ab, a super-Jupiter dancing with two stars? CHAUVIN G., VIDELA M., BEUST H., et al.
2023AJ....166..166L 112       D       C       5 36 ~ Visual Orbits and Alignments of Planet-hosting Binary Systems. LESTER K.V., HOWELL S.B., MATSON R.A., et al.

goto View the references in ADS