SIMBAD references

2023A&A...672A.158S - Astronomy and Astrophysics, volume 672A, 158 (2023/4-1)

The Effelsberg survey of FU Orionis and EX Lupi objects I. Host environments of FUors and EXors traced by NH3.


Abstract (from CDS):

Context. FU Orionis (FUor) and EX Lupi (EXor) type objects represent two small but rather spectacular groups of low-mass, young, eruptive stars. In both cases, outbursts of several magnitudes are observed, which are attributed to enhanced mass accretion from the circumstellar disc onto the central protostar. Although these objects are well studied at optical and near-infrared wavelengths, their host molecular environments are poorly explored because of the scarcity of systematic molecular line observations.
Aims. We aim to carry out the first dedicated survey of the molecular environments of a large sample of FUors and EXors, observing a total of 51 sources, including some Gaia alerts, to study the ammonia (NH3) emission in their host environments.
Methods. We observed the ammonia (J, K) = (1,1), (2,2), and (3,3) inversion transitions at ∼23.7 GHz in position-switching mode using the Effelsberg 100-m radio telescope. For 19 of the 51 sources in our sample, we derived H2 column densities and dust temperatures using archival Herschel/SPIRE data at 250 µm, 300 µm, and 500 µm.
Results. We detected the NH3 (1,1) transition toward 28 sources and the (2,2) transition toward 12 sources, while the (3,3) transition was detected towards only two sources in our sample. We find kinetic temperatures between ∼12 K and 21 K, ammonia column densities from 5.2 × 1013 cm–2 to 3.2 × 1015 cm–2, and fractional ammonia abundances with respect to H2 from 4.7 × 10–9 to 1.5 × 10–7. These results are comparable to those found in infrared dark clouds (IRDCs). Our kinematic analysis suggests that most of the eruptive stars in our sample reside in rather quiescent (sonic or transonic) host environments.
Conclusions. Our NH3 observations and analysis of the SPIRE dust-based H2 column density maps confirm the presence of dense material towards seven sources in our sample; additional sources might also harbour dense gas based on their NH2 (2,2) detections, potentially indicating an earlier phase than originally classified. Based on our results, we suggest that observations targeting additional molecular lines would help to refine the evolutionary classification of eruptive stars.

Abstract Copyright: © The Authors 2023

Journal keyword(s): molecular data - methods: observational - stars: low-mass - stars: pre-main sequence - radio lines: ISM - stars: formation

Simbad objects: 62

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2023A&A...672A.158S and select 'bookmark this link' or equivalent in the popup menu