SIMBAD references

2022PASJ...74.1005K - Publ. Astron. Soc. Jap., 74, 1005-1021 (2022/October-5)

Physics of nova outbursts: A theoretical model of classical nova outbursts with self-consistent wind mass loss.

KATO M., SAIO H. and HACHISU I.

Abstract (from CDS):

We present a model for one cycle of a classical nova outburst based on a self-consistent wind mass loss accelerated by the gradient of radiation pressure, i.e., so-called optically thick winds. Evolution models are calculated by a Henyey code for a 1.0 $M_{\odot }$ white dwarf with a mass-accretion rate of 5 × 10–9 $M_{\odot }$ yr–1. The outermost part of the hydrogen-rich envelope is connected to a steadily moving envelope where optically thick winds occur. We confirm that no internal shock waves occur at thermonuclear runaway. The wind mass-loss rate reaches a peak of 1.4 × 10–4 $M_{\odot }$ yr–1 at the epoch of the maximum photospheric expansion, where the photospheric temperature decreases to log Tph (K) = 3.90. Almost all of the accreted mass is lost in the wind. The nuclear energy generated in hydrogen burning is lost in a form of photon emission (64%), gravitational energy (lifting up the wind matter against gravity, 35%), and the kinetic energy of the wind (0.23%). A classical nova should be very bright in a far-UV (100-300 Å) band for one day just after the onset of thermonuclear runaway (∼ 25 d before the optical maximum). In the decay phase of the nova outburst, the envelope structure is very close to that of a steady-state solution.

Abstract Copyright: © The Author(s) 2022. Published by Oxford University Press on behalf of the Astronomical Society of Japan.

Journal keyword(s): novae, cataclysmic variables - stars: interiors - stars: mass loss - white dwarfs - X-rays: binaries

Simbad objects: 6

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2022PASJ...74.1005K and select 'bookmark this link' or equivalent in the popup menu