SIMBAD references

2022NatAs...6..736S - Nature Astronomy, 6, 736-750 (2022/June-0)

A low-eccentricity migration pathway for a 13-h-period Earth analogue in a four-planet system.

SERRANO L.M., GANDOLFI D., MUSTILL A.J., BARRAGAN O., KORTH J., DAI F., REDFIELD S., FRIDLUND M., LAM K.W.F., DIAZ M.R., GRZIWA S., COLLINS K.A., LIVINGSTON J.H., COCHRAN W.D., HELLIER C., BELLOMO S.E., TRIFONOV T., RODLER F., ALARCON J., JENKINS J.M., LATHAM D.W., RICKER G., SEAGER S., VANDERSPECK R., WINN J.N., ALBRECHT S., COLLINS K.I., CSIZMADIA S., DAYLAN T., DEEG H.J., ESPOSITO M., FAUSNAUGH M., GEORGIEVA I., GOFFO E., GUENTHER E., HATZES A.P., HOWELL S.B., JENSEN E.L.N., LUQUE R., MANN A.W., MURGAS F., OSBORNE H.L.M., PALLE E., PERSSON C.M., ROWDEN P., RUDAT A., SMITH A.M.S., TWICKEN J.D., VAN EYLEN V. and ZIEGLER C.

Abstract (from CDS):

It is commonly accepted that exoplanets with orbital periods shorter than one day, also known as ultra-short-period (USP) planets, formed further out within their natal protoplanetary disks before migrating to their current-day orbits via dynamical interactions. One of the most accepted theories suggests a violent scenario involving high-eccentricity migration followed by tidal circularization. Here we present the discovery of a four-planet system orbiting the bright (V = 10.5) K6 dwarf star TOI-500. The innermost planet is a transiting, Earth-sized USP planet with an orbital period of ∼13 hours, a mass of 1.42 ± 0.18 M⊕, a radius of 1.16 6-0.058+0.061R⊕ ? and a mean density of 4.8 9-0.88+1.03g cm-3 ?. Via Doppler spectroscopy, we discovered that the system hosts 3 outer planets on nearly circular orbits with periods of 6.6, 26.2 and 61.3 days and minimum masses of 5.03 ± 0.41 M⊕, 33.12 ± 0.88 M⊕ and 15.0 5-1.11+1.12M⊕ ?, respectively. The presence of both a USP planet and a low-mass object on a 6.6-day orbit indicates that the architecture of this system can be explained via a scenario in which the planets started on low-eccentricity orbits then moved inwards through a quasi-static secular migration. Our numerical simulations show that this migration channel can bring TOI-500 b to its current location in 2 Gyr, starting from an initial orbit of 0.02 au. TOI-500 is the first four-planet system known to host a USP Earth analogue whose current architecture can be explained via a non-violent migration scenario.

Abstract Copyright: ©

Journal keyword(s): Astrophysics - Earth and Planetary Astrophysics

Status at CDS : Large table(s) will be appraised for possible ingestion in VizieR.

Simbad objects: 33

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2022NatAs...6..736S and select 'bookmark this link' or equivalent in the popup menu