SIMBAD references

2022ApJ...940...91H - Astrophys. J., 940, 91 (2022/November-3)

High-energy Photon Opacity in the Twisted Magnetospheres of Magnetars.

HU K., BARING M.G., HARDING A.K. and WADIASINGH Z.

Abstract (from CDS):

Magnetars are neutron stars characterized by strong surface magnetic fields generally exceeding the quantum critical value of 44.1 TG. High-energy photons propagating in their magnetospheres can be attenuated by QED processes like photon splitting and magnetic pair creation. In this paper, we compute the opacities due to photon splitting and pair creation by photons emitted anywhere in the magnetosphere of a magnetar. Axisymmetric, twisted dipole field configurations embedded in the Schwarzschild metric are treated. The paper computes the maximum energies for photon transparency that permit propagation to infinity in curved spacetime. Special emphasis is given to cases where photons are generated along magnetic field loops and/or in polar regions; these cases directly relate to resonant inverse Compton scattering models for the hard X-ray emission from magnetars and Comptonized soft gamma-ray emission from giant flares. We find that increases in magnetospheric twists raise or lower photon opacities, depending on both the emission locale and the competition between field-line straightening and field strength enhancement. Consequently, given the implicit spectral transparency of hard X-ray bursts and persistent “tail” emission of magnetars, photon splitting considerations constrain their emission region locales and the twist angle of the magnetosphere; these constraints can be probed by future soft gamma-ray telescopes such as COSI and AMEGO. The inclusion of twists generally increases the opaque volume of pair creation by photons above its threshold, except when photons are emitted in polar regions and approximately parallel to the field.

Abstract Copyright: © 2022. The Author(s). Published by the American Astronomical Society.

Journal keyword(s): Magnetars - Magnetic fields - Radiative transfer

Simbad objects: 9

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2022ApJ...940...91H and select 'bookmark this link' or equivalent in the popup menu