SIMBAD references

2022ApJ...935..177S - Astrophys. J., 935, 177 (2022/August-3)

The ALPINE-ALMA [C II] Survey: The Infrared-Radio Correlation and Active Galactic Nucleus Fraction of Star-forming Galaxies at z ∼ 4.4-5.9.

SHEN L., LEMAUX B.C., LUBIN L.M., LIU G., BETHERMIN M., BOQUIEN M., CUCCIATI O., LE FEVRE O., TALIA M., VERGANI D., ZAMORANI G., FAISST A.L., GINOLFI M., GRUPPIONI C., JONES G.C., BARDELLI S., HATHI N., KOEKEMOER A.M., ROMANO M., SCHAERER D., ZUCCA E., FANG W., FORREST B., GAL R., HUNG D., SHAH E.A., STAAB P., VANDERHOOF B. and IBAR E.

Abstract (from CDS):

We present the radio properties of 66 spectroscopically confirmed normal star-forming galaxies (SFGs) at 4.4 < z < 5.9 in the COSMOS field that were [C II]-detected in the Atacama Large Millimeter/submillimeter Array Large Program to INvestigate [C II] at Early times (ALPINE). We separate these galaxies (“C II-detected-all”) into lower-redshift (“C II-detected-lz”; 〈z〉 = 4.5) and higher-redshift (“C II-detected-hz”; 〈z〉 = 5.6) subsamples, and stack multiwavelength imaging for each subsample from X-ray to radio bands. A radio signal is detected in the stacked 3 GHz images of the C II-detected-all and lz samples at ≳3σ. We find that the infrared-radio correlation of our sample, quantified by qTIR, is lower than the local relation for normal SFGs at a ∼3σ significance level, and is instead broadly consistent with that of bright submillimeter galaxies at 2 < z < 5. Neither of these samples show evidence of dominant active galactic nucleus activity in their stacked spectral energy distributions (SEDs), UV spectra, or stacked X-ray images. Although we cannot rule out the possible effects of the assumed spectral index and applied infrared SED templates in causing these differences, at least partially, the lower obscured fraction of star formation than at lower redshift can alleviate the tension between our stacked qTIRs and those of local normal SFGs. It is possible that the dust buildup, which primarily governs the infrared emission, in addition to older stellar populations, has not had enough time to occur fully in these galaxies, whereas the radio emission can respond on a more rapid timescale. Therefore, we might expect a lower qTIR to be a general property of high-redshift SFGs.

Abstract Copyright: © 2022. The Author(s). Published by the American Astronomical Society.

Journal keyword(s): Star formation - Submillimeter astronomy - High-redshift galaxies - Galaxy evolution - Radio astronomy

Simbad objects: 5

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2022ApJ...935..177S and select 'bookmark this link' or equivalent in the popup menu