SIMBAD references

2022A&A...668A...8L - Astronomy and Astrophysics, volume 668A, 8 (2022/12-1)

TOPz: Photometric redshifts for J-PAS.

LAUR J., TEMPEL E., TAMM A., KIPPER R., LIIVAMAGI L.J., HERNAN-CABALLERO A., MURU M.M., CHAVES-MONTERO J., DIAZ-GARCIA L.A., TURNER S., TUVIKENE T., QUEIROZ C., BOM C.R., FERNANDEZ-ONTIVEROS J.A., GONZALEZ DELGADO R.M., CIVERA T., ABRAMO R., ALCANIZ J., BENITEZ N., BONOLI S., CARNEIRO S., CENARRO J., CRISTOBAL-HORNILLOS D., DUPKE R., EDEROCLITE A., LOPEZ-SANJUAN C., MARIN-FRANCH A., DE OLIVEIRA C.M., MOLES M., SODRE L. Jr, TAYLOR K., VARELA J. and VAZQUEZ RAMIO H.

Abstract (from CDS):

Context. The importance of photometric galaxy redshift estimation is rapidly increasing with the development of specialised powerful observational facilities. Aims. We develop a new photometric redshift estimation workflow TOPz to provide reliable and efficient redshift estimations for the upcoming large-scale survey J-PAS which will observe 8500 deg2 of the northern sky through 54 narrow-band filters. Methods. TOPz relies on template-based photo-z estimation with some added J-PAS specific features and possibilities. We present TOPz performance on data from the miniJPAS survey, a precursor to the J-PAS survey with an identical filter system. First, we generated spectral templates based on the miniJPAS sources using the synthetic galaxy spectrum generation software CIGALE. Then we applied corrections to the input photometry by minimising systematic offsets from the template flux in each filter. To assess the accuracy of the redshift estimation, we used spectroscopic redshifts from the DEEP2, DEEP3, and SDSS surveys, available for 1989 miniJPAS galaxies with r < 22 magAB. We also tested how the choice and number of input templates, photo-z priors, and photometric corrections affect the TOPz redshift accuracy. Results. The general performance of the combination of miniJPAS data and the TOPz workflow fulfills the expectations for J-PAS redshift accuracy. Similarly to previous estimates, we find that 38.6% of galaxies with r < 22 mag reach the J-PAS redshift accuracy goal of dz/(1 + z) < 0.003. Limiting the number of spectra in the template set improves the redshift accuracy up to 5%, especially for fainter, noise-dominated sources. Further improvements will be possible once the actual J-PAS data become available.

Abstract Copyright: © J. Laur et al. 2022

Journal keyword(s): galaxies: distances and redshifts - methods: observational - techniques: photometric

Simbad objects: 2

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2022A&A...668A...8L and select 'bookmark this link' or equivalent in the popup menu