SIMBAD references

2022A&A...665A..55S - Astronomy and Astrophysics, volume 665A, 55-55 (2022/9-1)

Warm molecular and ionized gas kinematics in the type-2 quasar J0945+1737.

SPERANZA G., RAMOS ALMEIDA C., ACOSTA-PULIDO J.A., RIFFEL R.A., TADHUNTER C., PIERCE J.C.S., RODRIGUEZ-ARDILA A., COLOMA PUGA M., BRUSA M., MUSIIMENTA B., ALEXANDER D.M., LAPI A., SHANKAR F. and VILLFORTH C.

Abstract (from CDS):

We analyse Near-Infrared Integral Field Spectrograph (NIFS) observations of the type-2 quasar (QSO2) SDSS J094521.33+173753.2 to investigate its warm molecular and ionized gas kinematics. This QSO2 has a bolometric luminosity of 1045.7 erg s–1 and a redshift of z = 0.128. The K-band spectra provided by NIFS cover a range of 1.99-2.40 µm where low ionization (Paα and Brδ), high ionization ([S XI]λ1.920 µm and [Si VI]λ1.963 µm), and warm molecular lines (from H21-0S(5) to 1-0S(1)) are detected, allowing us to study the multi-phase gas kinematics. Our analysis reveals gas in ordinary rotation in all the emission lines detected and also outflowing gas in the case of the low and high ionization emission lines. In the case of the nuclear spectrum, which corresponds to a circular aperture of 0.3'' (686 pc) in diameter, the warm molecular lines can be characterized using a single Gaussian component of full width at half maximum (FWHM) = 350 - 400 km s–1, while Paα, Brδ, and [Si VI] are best fitted with two blue-shifted Gaussian components of FWHM ∼ 800 and 1700 km s–1, in addition to a narrow component of ∼300 km s–1. We interpret the blue-shifted broad components as outflowing gas, which reaches the highest velocities, of up to -840 km s–1, in the south-east direction (PA ∼ 125°), extending up to a distance of ∼3.4 kpc from the nucleus. The ionized outflow has a maximum mass outflow rate of Mout,max = 42-51 M yr–1, and its kinetic power represents 0.1% of the quasar bolometric luminosity. Very Large Array (VLA) data of J0945 show extended radio emission (PA ∼ 100°) that is aligned with the clumpy emission traced by the narrow component of the ionized lines up to scales of several kiloparsecs, and with the innermost part of the outflow (central ∼0.4'' = 915 pc). Beyond that radius, at the edge of the radio jet, the high velocity gas shows a different PA of ∼125°. This might be an indication that the line-emitting gas is being compressed and accelerated by the shocks generated by the radio jet.

Abstract Copyright: © G. Speranza et al. 2022

Journal keyword(s): Galaxy: evolution - quasars: emission lines - galaxies: nuclei - quasars: supermassive black holes - galaxies: kinematics and dynamics

Simbad objects: 7

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2022A&A...665A..55S and select 'bookmark this link' or equivalent in the popup menu