2022A&A...664A..21Q


Query : 2022A&A...664A..21Q

2022A&A...664A..21Q - Astronomy and Astrophysics, volume 664A, 21-21 (2022/8-1)

Large Interferometer For Exoplanets (LIFE). I. Improved exoplanet detection yield estimates for a large mid-infrared space-interferometer mission.

QUANZ S.P., OTTIGER M., FONTANET E., KAMMERER J., MENTI F., DANNERT F., GHEORGHE A., ABSIL O., AIRAPETIAN V.S., ALEI E., ALLART R., ANGERHAUSEN D., BLUMENTHAL S., BUCHHAVE L.A., CABRERA J., CARRION-GONZALEZ O., CHAUVIN G., DANCHI W.C., DANDUMONT C., DEFRERE D., DORN C., EHRENREICH D., ERTEL S., FRIDLUND M., MUNOZ A.G., GASCON C., GIRARD J.H., GLAUSER A., GRENFELL J.L., GUIDI G., HAGELBERG J., HELLED R., IRELAND M.J., JANSON M., KOPPARAPU R.K., KORTH J., KOZAKIS T., KRAUS S., LEGER A., LEEDJARV L., LICHTENBERG T., LILLO-BOX J., LINZ H., LISEAU R., LOICQ J., MAHENDRA V., MALBET F., MATHEW J., MENNESSON B., MEYER M.R., MISHRA L., MOLAVERDIKHANI K., NOACK L., OZA A.V., PALLE E., PARVIAINEN H., QUIRRENBACH A., RAUER H., RIBAS I., RICE M., ROMAGNOLO A., RUGHEIMER S., SCHWIETERMAN E.W., SERABYN E., SHARMA S., STASSUN K.G., SZULAGYI J., WANG H.S., WUNDERLICH F., WYATT M.C. (The LIFE Collaboration)

Abstract (from CDS):


Context. One of the long-term goals of exoplanet science is the atmospheric characterization of dozens of small exoplanets in order to understand their diversity and search for habitable worlds and potential biosignatures. Achieving this goal requires a space mission of sufficient scale that can spatially separate the signals from exoplanets and their host stars and thus directly scrutinize the exoplanets and their atmospheres.
Aims. We seek to quantify the exoplanet detection performance of a space-based mid-infrared (MIR) nulling interferometer that measures the thermal emission of exoplanets. We study the impact of various parameters and compare the performance with that of large single-aperture mission concepts that detect exoplanets in reflected light.
Methods. We have developed an instrument simulator that considers all major astrophysical noise sources and coupled it with Monte Carlo simulations of a synthetic exoplanet population around main-sequence stars within 20 pc of the Sun. This allows us to quantify the number (and types) of exoplanets that our mission concept could detect. Considering single visits only, we discuss two different scenarios for distributing 2.5 yr of an initial search phase among the stellar targets. Different apertures sizes and wavelength ranges are investigated.
Results. An interferometer consisting of four 2 m apertures working in the 4-18.5 µ.m wavelength range with a total instrument throughput of 5% could detect up to ≃550 exoplanets with radii between 0.5 and 6 R with an integrated S/N ≥ 7. At least ≃160 of the detected exoplanets have radii ≤1.5 R. Depending on the observing scenario, ≃25-45 rocky exoplanets (objects with radii between 0.5 and 1.5 R) orbiting within the empirical habitable zone (eHZ) of their host stars are among the detections. With four 3.5 m apertures, the total number of detections can increase to up to ≃770, including ≃60-80 rocky eHZ planets. With four times 1 m apertures, the maximum detection yield is ≃315 exoplanets, including ≤20 rocky eHZ planets. The vast majority of small, temperate exoplanets are detected around M dwarfs. The impact of changing the wavelength range to 3-20 µm or 6-17 µm on the detection yield is negligible.
Conclusions. A large space-based MIR nulling interferometer will be able to directly detect hundreds of small, nearby exoplanets, tens of which would be habitable world candidates. This shows that such a mission can compete with large single-aperture reflected light missions. Further increasing the number of habitable world candidates, in particular around solar-type stars, appears possible via the implementation of a multi-visit strategy during the search phase. The high median S/N of most of the detected planets will allow for first estimates of their radii and effective temperatures and will help prioritize the targets for a second mission phase to obtain high-S/N thermal emission spectra, leveraging the superior diagnostic power of the MIR regime compared to shorter wavelengths.

Abstract Copyright: © ESO 2022

Journal keyword(s): planets and satellites: terrestrial planets - telescopes - instrumentation: high angular resolution - methods: numerical - planets and satellites: detection - infrared: planetary systems

Simbad objects: 58

goto Full paper

goto View the references in ADS

Number of rows : 58
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2023
#notes
1 GJ 15 Ac Pl 00 18 22.8849667932 +44 01 22.637271919           ~ 10 0
2 BD+61 195b Pl 01 02 38.8679928575 +62 20 42.172837073           ~ 10 0
3 NAME Teegarden's Star b Pl 02 53 00.8913291021 +16 52 52.642086267           ~ 12 0
4 NAME Teegarden's Star c Pl 02 53 00.8913291021 +16 52 52.642086267           ~ 15 0
5 NAME L 372-58b Pl 03 35 59.6996745075 -44 30 45.725264343           ~ 6 0
6 NAME L 372-58c Pl 03 35 59.6996745075 -44 30 45.725264343           ~ 9 0
7 NAME L 372-58d Pl 03 35 59.6996745075 -44 30 45.725264343           ~ 11 0
8 HD 285968b Pl 04 42 55.7753203198 +18 57 29.394344631           ~ 43 1
9 NAME LP 656-38b Pl 05 01 57.4261049715 -06 56 46.371875101           ~ 17 0
10 NAME LP 656-38c Pl 05 01 57.4261049715 -06 56 46.371875101           ~ 13 0
11 HD 42581b Pl 06 10 34.6152510171 -21 51 52.658021185           ~ 14 0
12 BD+05 1668b Pl 07 27 24.4989685603 +05 13 32.841491057           ~ 21 0
13 BD+05 1668c Pl 07 27 24.4989685603 +05 13 32.841491057           ~ 16 0
14 NAME G 234-45b Pl 08 41 20.1289475639 +59 29 50.444849212           ~ 18 0
15 HD 79211 Er* 09 14 24.6828466599 +52 41 10.902471910   7.966   6.8   M0V 275 0
16 NAME L 678-39d Pl 09 36 01.6372518187 -21 39 38.878281901           ~ 13 0
17 NAME L 678-39b Pl 09 36 01.6372518187 -21 39 38.878281901           ~ 43 0
18 NAME L 678-39c Pl 09 36 01.6372518187 -21 39 38.878281901           ~ 12 0
19 HD 95735b Pl 11 03 20.1948195942 +35 58 11.576182057           ~ 30 1
20 CD-31 9113c Pl 11 35 26.9474098036 -32 32 23.883014588           ~ 11 1
21 CD-31 9113b Pl 11 35 26.9474098036 -32 32 23.883014588           ~ 22 1
22 Ross 905b Pl 11 42 11.0933874353 +26 42 23.658083337           ~ 739 1
23 HD 106038 PM* 12 12 01.3688687080 +13 15 40.618559661 10.45 10.630 10.162 9.851 9.539 F6wl 182 0
24 * c Vir RG* 12 20 20.9813922197 +03 18 45.255217001 7.27 6.12 4.96 4.07 3.46 K0.5IIIbFe-0.5 353 0
25 NAME Proxima Centauri b Pl 14 29 42.9451234609 -62 40 46.170818907           ~ 320 0
26 BD-07 4003c Pl 15 19 26.8271336166 -07 43 20.190958776           ~ 107 1
27 BD-07 4003b Pl 15 19 26.8271336166 -07 43 20.190958776           ~ 82 1
28 BD-07 4003e Pl 15 19 26.8271336166 -07 43 20.190958776           ~ 74 1
29 NAME G 202-48b Pl 16 25 24.6233091302 +54 18 14.765751243           ~ 16 0
30 BD-12 4523c Pl 16 30 18.0582010683 -12 39 45.323235188           ~ 18 0
31 BD-12 4523b Pl 16 30 18.0582010683 -12 39 45.323235188           ~ 19 0
32 BD-12 4523d Pl 16 30 18.0582010683 -12 39 45.323235188           ~ 17 0
33 HD 156384Cc Pl 17 18 58.8271844065 -34 59 48.612934284           ~ 46 1
34 HD 156384Cb Pl 17 18 58.8271844065 -34 59 48.612934284           ~ 27 1
35 CD-46 11540b Pl 17 28 39.9455601300 -46 53 42.693246243           ~ 50 1
36 BD+68 946b Pl 17 36 25.8991699744 +68 20 20.904135942           ~ 17 0
37 CD-44 11909c Pl 17 37 03.6657231894 -44 19 09.168952602           ~ 7 0
38 CD-44 11909b Pl 17 37 03.6657231894 -44 19 09.168952602           ~ 10 0
39 BD+18 3421b Pl 17 37 53.3467427850 +18 35 30.160739363           ~ 14 0
40 HD 180617b Pl 19 16 55.2565250393 +05 10 08.038856129           ~ 11 0
41 HD 192310b Pl 20 15 17.3916558603 -27 01 58.713584596           ~ 29 1
42 HD 192310c Pl 20 15 17.3916558603 -27 01 58.713584596           ~ 24 1
43 HD 197481b Pl? 20 45 09.5323695486 -31 20 27.241710746           ~ 72 0
44 HD 204961c Pl 21 33 33.9749932664 -49 00 32.403471949           ~ 24 0
45 HD 204961b Pl 21 33 33.9749932664 -49 00 32.403471949           ~ 57 1
46 * eps Ind b Pl 22 03 21.6542294981 -56 47 09.537018193           ~ 8 0
47 BD-05 5715b Pl 22 09 40.3443754647 -04 38 26.651267098           ~ 44 1
48 BD-15 6290e Pl 22 53 16.7323107416 -14 15 49.303409936           ~ 45 1
49 BD-15 6290b Pl 22 53 16.7323107416 -14 15 49.303409936           ~ 240 1
50 BD-15 6290d Pl 22 53 16.7323107416 -14 15 49.303409936           ~ 149 1
51 BD-15 6290c Pl 22 53 16.7323107416 -14 15 49.303409936           ~ 185 1
52 HD 217987b Pl? 23 05 52.0354545522 -35 51 11.058757520           ~ 6 0
53 HD 217987c Pl? 23 05 52.0354545522 -35 51 11.058757520           ~ 6 0
54 HD 219134h Pl 23 13 16.9747821012 +57 10 06.076520993           ~ 7 0
55 HD 219134g Pl 23 13 16.9747821012 +57 10 06.076520993           ~ 8 0
56 HD 219134d Pl 23 13 16.9747821012 +57 10 06.076520993           ~ 15 0
57 HD 219134b Pl 23 13 16.9747821012 +57 10 06.076520993           ~ 92 0
58 HD 219134c Pl 23 13 16.9747821012 +57 10 06.076520993           ~ 44 0

To bookmark this query, right click on this link: simbad:objects in 2022A&A...664A..21Q and select 'bookmark this link' or equivalent in the popup menu


2023.01.30-06:17:11

© Université de Strasbourg/CNRS

    • Contact