2022A&A...661A..60A


Query : 2022A&A...661A..60A

2022A&A...661A..60A - Astronomy and Astrophysics, volume 661A, 60-60 (2022/5-1)

Stripped-envelope stars in different metallicity environments. I. Evolutionary phases, classification, and populations.

AGUILERA-DENA D.R., LANGER N., ANTONIADIS J., PAULI D., DESSART L., VIGNA-GOMEZ A., GRAFENER G. and YOON S.-C.

Abstract (from CDS):

Massive stars that become stripped of their hydrogen envelope through binary interaction or winds can be observed either as Wolf-Rayet stars, if they have optically thick winds, or as transparent-wind stripped-envelope stars. We approximate their evolution through evolutionary models of single helium stars, and compute detailed model grids in the initial mass range 1.5-70 M for metallicities between 0.01 and 0.04, from core helium ignition until core collapse. Throughout their lifetimes some stellar models expose the ash of helium burning. We propose that models that have nitrogen-rich envelopes are candidate WN stars, while models with a carbon-rich surface are candidate WC stars during core helium burning, and WO stars afterwards. We measure the metallicity dependence of the total lifetimes of our models and the duration of their evolutionary phases. We propose an analytic estimate of the wind's optical depth to distinguish models of Wolf-Rayet stars from transparent-wind stripped-envelope stars, and find that the luminosity ranges at which WN-, WC-, and WO-type stars can exist is a strong function of metallicity. We find that all carbon-rich models produced in our grids have optically thick winds and match the luminosity distribution of observed populations. We construct population models and predict the numbers of transparent-wind stripped-envelope stars and Wolf-Rayet stars, and derive their number ratios at different metallicities. We find that as metallicity increases, the number of transparent-wind stripped-envelope stars decreases and the number of Wolf-Rayet stars increases. At high metallicities WC- and WO-type stars become more common. We apply our population models to nearby galaxies, and find that populations are more sensitive to the transition luminosity between Wolf-Rayet stars and transparent-wind helium stars than to the metallicity-dependent mass loss rates.

Abstract Copyright: © D. R. Aguilera-Dena et al. 2022

Journal keyword(s): stars: massive - stars: Wolf-Rayet - stars: winds, outflows - binaries: general - supernovae: general

Simbad objects: 8

goto Full paper

goto View the references in ADS

Number of rows : 8
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2024
#notes
1 M 31 AGN 00 42 44.330 +41 16 07.50 4.86 4.36 3.44     ~ 12635 1
2 NAME SMC G 00 52 38.0 -72 48 01   2.79 2.2     ~ 11139 1
3 M 33 GiG 01 33 50.8965749232 +30 39 36.630403128 6.17 6.27 5.72     ~ 5834 1
4 NAME Magellanic Clouds GrG 03 00 -71.0           ~ 7058 0
5 NAME LMC G 05 23 34.6 -69 45 22     0.4     ~ 17420 0
6 Mrk 116 PaG 09 34 02.1 +55 14 25           ~ 1104 1
7 THA 20-1 WR* 18 39 17.9035317744 -10 05 30.898013928   13.07 12.43     WC9d 58 0
8 NAME Local Group GrG ~ ~           ~ 8382 0

To bookmark this query, right click on this link: simbad:objects in 2022A&A...661A..60A and select 'bookmark this link' or equivalent in the popup menu