SIMBAD references

2022A&A...660A..52C - Astronomy and Astrophysics, volume 660A, 52-52 (2022/4-1)

CaRM: Exploring the chromatic Rossiter-McLaughlin effect. The cases of HD 189733b and WASP-127b.

CRISTO E., SANTOS N.C., DEMANGEON O., MARTINS J.H.C., FIGUEIRA P., CASASAYAS-BARRIS N., ZAPATERO OSORIO M.R., BORSA F., SOUSA S.G., OSHAGH M., MICELA G., TABERNERO H.M., SEIDEL J.V., CRISTIANI S., PEPE F., REBOLO R., ADIBEKYAN V., ALLART R., ALIBERT Y., AZEVEDO SILVA T., BOURRIER V., CABRAL A., ESPARZA-BORGES E., GONZALEZ HERNANDEZ J.I., LILLO-BOX J., LO CURTO G., LOVIS C., MANESCAU A., DI MARCANTONIO P., MARTINS C.J.A.P., MEGEVAND D., MEHNER A., NUNES N.J., PALLE E., SOZZETTI A., SUAREZ MASCARENO A. and UDRY S.

Abstract (from CDS):


Aims. In this paper we introduce CaRM, a semi-automatic code for the retrieval of broadband transmission spectra of transiting planets through the chromatic Rossiter-McLaughlin method. We applied it to HARPS and ESPRESSO observations of two exoplanets to retrieve the transmission spectrum and we analyze its fitting transmission models.
Methods. We used the strong radius dependence of the Rossiter-McLaughlin (RM) effect amplitude, caused by planetary companions, to measure the apparent radius change caused by the exoplanet atmosphere. In order to retrieve the transmission spectrum, the radial velocities, which were computed over wavelength bins that encompass several spectral orders, were used to simultaneously fit the Keplerian motion and the RM effect. From this, the radius ratio was computed as a function of the wavelength, which allows one to retrieve the low-resolution broadband transmission spectrum of a given exoplanet. CaRM offers the possibility to use two Rossiter-McLaughlin models taken from ARoME and PyAstronomy, associated with a Keplerian function to fit radial velocities during transit observations automatically. Furthermore it offers the possibility to use some methods that could, in theory, mitigate the effect of perturbation in the radial velocities during transits.
Results. We applied CaRM to recover the transmission spectrum of HD 189733b and WASP-127b, with HARPS and ESPRESSO data, respectively. Our results for HD 189733b suggest that the blue part of the spectrum is dominated by Rayleigh scattering, which is compatible with former studies. The analysis of WASP-127b shows a flat transmission spectrum.
Conclusions. The CaRM code allows one to retrieve the transmission spectrum of a given exoplanet using minimal user interaction. We demonstrate that it allows one to compute the low-resolution broadband transmission spectra of exoplanets observed using high-resolution spectrographs such as HARPS and ESPRESSO.

Abstract Copyright: © ESO 2022

Journal keyword(s): planets and satellites: atmospheres - techniques: spectroscopic

Simbad objects: 5

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2022A&A...660A..52C and select 'bookmark this link' or equivalent in the popup menu