SIMBAD references

2021MNRAS.502.5455A - Mon. Not. R. Astron. Soc., 502, 5455-5470 (2021/April-3)

Distances to Galactic X-ray binaries with Gaia DR2.


Abstract (from CDS):

Precise and accurate measurements of distances to Galactic X-ray binaries (XRBs) reduce uncertainties in the determination of XRB physical parameters. We have cross-matched the XRB catalogues of Liu, van Paradijs & van den Heuvel to the results of Gaia Data Release 2. We identify 86 XRBs with a Gaia candidate counterpart, of which 32 are low-mass X-ray binaries (LMXBs) and 54 are high-mass X-ray binaries (HMXBs). Distances to Gaia candidate counterparts are, on average, consistent with those measured by Hipparcos and radio parallaxes. When compared to distances measured by Gaia candidate counterparts, distances measured using Type I X-ray bursts are systematically larger, suggesting that these bursts reach only 50 per cent of the Eddington limit. However, these results are strongly dependent on the prior assumptions used for estimating distance from the Gaia parallax measurements. Comparing positions of Gaia candidate counterparts for XRBs in our sample to positions of spiral arms in the Milky Way, we find that HMXBs exhibit mild preference for being closer to spiral arms; LMXBs exhibit mild preference for being closer to interarm regions. LMXBs do not exhibit any preference for leading or trailing their closest spiral arm. HMXBs exhibit a mild preference for trailing their closest spiral arm. The lack of a strong correlation between HMXBs and spiral arms may be explained by star formation occurring closer to the mid-point of the arms, or a time delay between star formation and HMXB formation manifesting as a spatial separation between HMXBs and the spiral arm where they formed.

Abstract Copyright: © 2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society

Journal keyword(s): parallaxes - Galaxy: structure - X-rays: binaries - X-rays: bursts

Status at CDS : Large table(s) will be appraised for possible ingestion in VizieR.

Simbad objects: 101

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2021MNRAS.502.5455A and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact