SIMBAD references

2021ApJ...908...19B - Astrophys. J., 908, 19-19 (2021/February-2)

Black hole mass measurements of radio galaxies NGC 315 and NGC 4261 using ALMA CO observations.

BOIZELLE B.D., WALSH J.L., BARTH A.J., BUOTE D.A., BAKER A.J., DARLING J., HO L.C., COHN J. and KABASARES K.M.

Abstract (from CDS):

We present Atacama Large Millimeter/submillimeter Array (ALMA) Cycle 5 and Cycle 6 observations of CO (2-1) and CO (3-2) emission at 0.''2-0.''3 resolution in two radio-bright, brightest group/cluster early-type galaxies, NGC 315 and NGC 4261. The data resolve CO emission that extends within their black hole (BH) spheres of influence (rg), tracing regular Keplerian rotation down to just tens of parsecs from the BHs. The projected molecular gas speeds in the highly inclined (i >= 60°) disks rise at least to 500 km s–1 near their galaxy centers. We fit dynamical models of thin-disk rotation directly to the ALMA data cubes and account for the extended stellar mass distributions by constructing galaxy surface brightness profiles corrected for a range of plausible dust extinction values. The best-fit models yield (MBH/109M)=2.08±0.01(stat)–0.14+0.32(sys) for NGC 315 and (MBH/109M)=1.67±0.10(stat)–0.24+0.39(sys) for NGC 4261, the latter of which is larger than previous estimates by a factor of ∼3. The BH masses are broadly consistent with the relations between BH masses and host galaxy properties. These are among the first ALMA observations to map dynamically cold gas kinematics well within the BH-dominated regions of radio galaxies, resolving the respective rg by factors of ∼5-10. The observations demonstrate ALMA's ability to precisely measure BH masses in active galaxies, which will enable more confident probes of accretion physics for the most massive galaxies.

Abstract Copyright: © 2021. The American Astronomical Society. All rights reserved.

Journal keyword(s): Supermassive black holes - Fanaroff-Riley radio galaxies - Molecular gas - Millimeter astronomy - Submillimeter astronomy - Galaxy kinematics - Astronomy data modeling

Simbad objects: 12

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2021ApJ...908...19B and select 'bookmark this link' or equivalent in the popup menu