SIMBAD references

2020MNRAS.498.3782J - Mon. Not. R. Astron. Soc., 498, 3782-3806 (2020/November-1)

Convective differential rotation in stars and planets - II. Observational and numerical tests.

JERMYN A.S., CHITRE S.M., LESAFFRE P. and TOUT C.A.

Abstract (from CDS):

Differential rotation is central to a great many mysteries in stars and planets. In part I, we predicted the order of magnitude and scaling of the differential rotation in both hydrodynamic and magnetohydrodynamic convection zones. Our results apply to both slowly and rapidly rotating systems, and provide a general picture of differential rotation in stars and fluid planets. We further calculated the scalings of the meridional circulation, entropy gradient, and baroclinicity. In this companion paper, we compare these predictions with a variety of observations and numerical simulations. With a few exceptions, we find that these are consistent in both the slowly rotating and rapidly rotating limits. Our results help to localize core-envelope shear in red giant stars, suggest a rotation-dependent frequency shift in the internal gravity waves of massive stars, and potentially explain observed deviations from von Zeipel's gravity darkening in late-type stars.

Abstract Copyright: © 2020 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society

Journal keyword(s): convection - Sun: rotation - stars: evolution - stars: interiors - stars: rotation

Simbad objects: 6

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2020MNRAS.498.3782J and select 'bookmark this link' or equivalent in the popup menu