2020A&A...644A..34S


Query : 2020A&A...644A..34S

2020A&A...644A..34S - Astronomy and Astrophysics, volume 644A, 34-34 (2020/12-1)

Survey of ortho-H2D+ in high-mass star-forming regions.

SABATINI G., BOVINO S., GIANNETTI A., WYROWSKI F., ORDENES M.A., PASCALE R., PILLAI T., WIENEN M., CSENGERI T. and MENTEN K.M.

Abstract (from CDS):


Context. Deuteration has been suggested to be a reliable chemical clock of star-forming regions due to its strong dependence on density and temperature changes during cloud contraction. In particular, the H3+ isotopologues (e.g. ortho-H2D+) seem to act as good proxies of the evolutionary stages of the star formation process. While this has been widely explored in low-mass star-forming regions, in the high-mass counterparts only a few studies have been pursued, and the reliability of deuteration as a chemical clock remains inconclusive.
Aims. We present a large sample of o-H2D+ observations in high-mass star-forming regions and discuss possible empirical correlations with relevant physical quantities to assess its role as a chronometer of star-forming regions through different evolutionary stages.
Methods. APEX observations of the ground-state transition of o-H2D+ were analysed in a large sample of high-mass clumps selected from the ATLASGAL survey at different evolutionary stages. Column densities and beam-averaged abundances of o-H2D+ with respect to H2, X(o-H2D+), were obtained by modelling the spectra under the assumption of local thermodynamic equilibrium.
Results. We detect 16 sources in o-H2D+ and find clear correlations between X(o-H2D+) and the clump bolometric luminosity and the dust temperature, while only a mild correlation is found with the CO-depletion factor. In addition, we see a clear correlation with the luminosity-to-mass ratio, which is known to trace the evolution of the star formation process. This would indicate that the deuterated forms of H3+ are more abundant in the very early stages of the star formation process and that deuteration is influenced by the time evolution of the clumps. In this respect, our findings would suggest that the X(o-H2D+) abundance is mainly affected by the thermal changes rather than density changes in the gas. We have employed these findings together with observations of H13CO+, DCO+, and C17O to provide an estimate of the cosmic-ray ionisation rate in a sub-sample of eight clumps based on recent analytical work.
Conclusions. Our study presents the largest sample of o-H2D+ in star-forming regions to date. The results confirm that the deuteration process is strongly affected by temperature and suggests that o-H2D+ can be considered a reliable chemical clock during the star formation processes, as proved by its strong temporal dependence.

Abstract Copyright: © ESO 2020

Journal keyword(s): astrochemistry - stars: formation - ISM: molecules - molecular processes - surveys

Simbad objects: 63

goto Full paper

goto View the references in ADS

Number of rows : 63
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2024
#notes
1 NAME Ori B9 Cloud Cld 05 42 30.5 -01 20 33           ~ 23 0
2 AGAL G316.764-00.012 Y*O 14 44 56.000 -59 48 08.00           ~ 11 0
3 AGAL G317.867-00.151 Y*O 14 53 16 -59 26.5           ~ 23 0
4 AGAL G318.779-00.137 Y*O 14 59 33.06 -59 00 33.5           ~ 20 0
5 AGAL G320.881-00.397 Y*O 15 14 32.7 -58 11 28           ~ 18 0
6 MMB G330.953-00.182 cor 16 09 52.37 -51 54 57.6           ~ 34 0
7 AGAL G331.709+00.582 Y*O 16 10 06.61 -50 50 29.0           ~ 25 0
8 IRAS 16124-5110 Y*O 16 16 16.46832 -51 18 25.1964           ~ 40 0
9 IRAS 16157-4957 Y*O 16 19 29.01 -50 04 41.3           ~ 39 0
10 AGAL G333.134-00.431 cor 16 21 02 -50 35.2           ~ 24 0
11 AGAL G333.656+00.059 Y*O 16 21 11.61 -49 52 16.3           ~ 21 0
12 [LCU2014] G333.286-00.387 cor 16 21 30.3 -50 26 48           ~ 27 0
13 AGAL G333.604-00.212 cor 16 22 09.45024 -50 05 58.0920           ~ 40 0
14 AGAL G335.789+00.174 cor 16 29 47 -48 15.9           ~ 18 0
15 AGAL G337.286+00.007 cor 16 36 35 -47 17.0           ~ 21 0
16 AGAL G337.258-00.101 cor 16 36 56 -47 22.5           ~ 17 0
17 AGAL G337.704-00.054 cor 16 38 30 -47 00.7           ~ 24 0
18 AGAL G337.406-00.402 cor 16 38 51 -47 27.9           ~ 22 0
19 AGAL G338.066+00.044 Y*O 16 39 28.5 -46 40 30           ~ 17 0
20 AGAL G338.786+00.476 Y*O 16 40 22.55 -45 51 04.1           ~ 21 0
21 AGAL G338.926+00.554 cor 16 40 34 -45 41.7           ~ 27 0
22 AGAL G340.784-00.097 cor 16 50 15 -44 42.5           ~ 20 0
23 OH 341.22-00.21 Y*O 16 52 17.92032 -44 26 52.4076           ~ 55 0
24 MMB G342.484+00.183 cor 16 55 02.30 -43 12 59.8           ~ 26 0
25 [PLW2012] G343.124-00.064-030.4 cor 16 58 17 -42 52.3           ~ 28 0
26 AGAL G343.756-00.164 cor 17 00 49.836 -42 26 09.39           ~ 19 0
27 AGAL G351.131+00.771 Y*O 17 19 34.42 -35 56 46.8           ~ 17 0
28 AGAL G351.161+00.697 cor 17 19 57 -35 57.8           ~ 20 0
29 AGAL G351.244+00.669 cor 17 20 17.84 -35 54 46.0           ~ 33 0
30 AGAL G351.571+00.762 Y*O 17 20 51.00 -35 35 25.8           ~ 26 0
31 MMB G351.445+00.660 cor 17 20 54.61 -35 45 08.6           ~ 48 0
32 [LPS2011b] Clump-7 smm 17 26 34.780 -36 06 34.22           ~ 5 0
33 AGAL G351.774-00.537 cor 17 26 43 -36 09.3           ~ 27 0
34 AGAL G353.417-00.079 Y*O 17 29 18.94 -34 32 05.9           ~ 19 0
35 AGAL G354.944-00.537 cor 17 35 12.7753 -33 30 22.961           ~ 27 0
36 AGAL G008.684-00.367 cor 18 06 23.460 -21 37 09.79           ~ 19 0
37 AGAL G008.706-00.414 Y*O 18 06 37 -21 37.4           ~ 40 0
38 AGAL G010.444-00.017 cor 18 08 45 -19 54.6           ~ 25 0
39 MMB G010.627-00.384 cor 18 10 29.22 -19 55 41.1           ~ 53 1
40 AGAL G012.496-00.222 cor 18 13 42 -18 12.7           ~ 19 0
41 MMB G013.179+00.061 cor 18 14 00.96 -17 28 32.5           ~ 27 0
42 AGAL G012.804-00.199 cor 18 14 13.34 -17 55 45.3           ~ 36 0
43 AGAL G014.492-00.139 MoC 18 17 22 -16 25.0           ~ 42 0
44 MMB G014.230-00.509 cor 18 18 12.59 -16 49 22.8           ~ 19 0
45 AGAL G014.114-00.574 Y*O 18 18 13 -16 57.4           ~ 23 0
46 AGAL G014.331-00.644 smm 18 18 55 -16 47.9           ~ 15 0
47 MMB G014.631-00.577 cor 18 19 15.21 -16 30 04.5           ~ 21 0
48 AGAL G015.718-00.594 Y*O 18 21 27 -15 33.1           ~ 10 0
49 NAME IRDC 18223-3 Y*O 18 25 08 -12 45.5           ~ 71 0
50 [CUS2014] G018.7344-0.2261 cor 18 25 56 -12 42.8           ~ 30 0
51 MMB G018.888-00.475 cor 18 27 07.85 -12 41 35.9           ~ 21 0
52 MMB G019.884-00.534 cor 18 29 14.37 -11 50 23.0           ~ 105 1
53 AGAL G023.206-00.377 cor 18 34 55 -08 49.3           ~ 30 0
54 AGAL G024.629+00.172 Y*O 18 35 35.6 -07 18 12           ~ 37 0
55 AGAL G028.564-00.236 cor 18 44 17.69 -03 59 26.5           ~ 46 0
56 AGAL G030.893+00.139 cor 18 47 14 -01 45.1           ~ 28 0
57 IRAS 18449-0115 cor 18 47 34.27 -01 12 43.2           ~ 388 0
58 AGAL G030.848-00.081 Y*O 18 47 56 -01 53.5           ~ 33 0
59 AGAL G034.411+00.234 Y*O 18 53 18.0319 +01 25 25.500           ~ 94 0
60 AGAL G034.401+00.226 cor 18 53 18.6 +01 24 40           ~ 63 1
61 [CUS2014] G034.2572+0.1535 cor 18 53 18.6449 +01 15 01.574           ~ 38 0
62 IRAS 18566+0408 Y*O 18 59 09.95520 +04 12 15.6240           ~ 133 0
63 AGAL G053.141+00.069 cor 19 29 17.50 +17 56 24.0           ~ 27 1

To bookmark this query, right click on this link: simbad:objects in 2020A&A...644A..34S and select 'bookmark this link' or equivalent in the popup menu