SIMBAD references

2020A&A...638L...7L - Astronomy and Astrophysics, volume 638, L7-7 (2020/6-1)

Collisional polarization of molecular ions: a signpost of ambipolar diffusion.

LANKHAAR B. and VLEMMINGS W.

Abstract (from CDS):

Magnetic fields play a role in the dynamics of many astrophysical processes, but they are hard to detect. In a partially ionized plasma, a magnetic field works directly on the ionized medium but not on the neutral medium, which gives rise to a velocity drift between them: ambipolar diffusion. This process is suggested to be important in the process of star formation, but has never been directly observed. We introduce a method that could be used to detect ambipolar diffusion and the magnetic field that gives rise to it, where we exploit the velocity drift between the charged and neutral medium. By using a representative classical model of the collision dynamics, we show that molecular ions partially align themselves when a velocity drift is present between the molecular ion and its main collision partner H2. We demonstrate that ambipolar diffusion potently aligns molecular ions in regions denser than their critical density. We include a model for HCO+ and show that collisional polarization could be detectable for the ambipolar drifts predicted by numerical simulations of the inner protostellar disk regions. The polarization vectors are aligned perpendicular to the magnetic field direction projected on the plane of the sky.

Abstract Copyright: © ESO 2020

Journal keyword(s): magnetic fields - stars: pre-main sequence - stars: magnetic field - polarization

Simbad objects: 1

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2020A&A...638L...7L and select 'bookmark this link' or equivalent in the popup menu