2020A&A...638A..58M


Query : 2020A&A...638A..58M

2020A&A...638A..58M - Astronomy and Astrophysics, volume 638A, 58-58 (2020/6-1)

Improving spectroscopic lithium abundances. Fitting functions for 3D non-LTE corrections in FGK stars of different metallicity.

MOTT A., STEFFEN M., CAFFAU E. and STRASSMEIER K.G.

Abstract (from CDS):


Context. Accurate spectroscopic lithium abundances are essential in addressing a variety of open questions, such as the origin of a uniform lithium content in the atmospheres of metal-poor stars (Spite plateau) or the existence of a correlation between the properties of extrasolar planetary systems and the lithium abundance in the atmosphere of their host stars.
Aims. We have developed a tool that allows the user to improve the accuracy of standard lithium abundance determinations based on 1D model atmospheres and the assumption of local thermodynamic equilibrium (LTE) by applying corrections that account for hydrodynamic (3D) and non-LTE (NLTE) effects in FGK stars of different metallicity.
Methods. Based on a grid of CO5BOLD 3D models and associated 1D hydrostatic atmospheres, we computed three libraries of synthetic spectra of the lithium λ 670.8 nm line for a wide range of lithium abundances, accounting for detailed line formation in 3D NLTE, 1D NLTE, and 1D LTE, respectively. The resulting curves-of-growth were then used to derive 3D NLTE and 1D NLTE lithium abundance corrections.
Results. For all metallicities, the largest corrections are found at the coolest effective temperature, Teff=5000K. They are mostly positive, up to +0.2dex, for the weakest lines (lithium abundance A(Li)1DLTE=1.0), whereas they become more negative towards lower metallicities, where they can reach -0.4dex for the strongest lines (A(Li)1DLTE=3.0) at [Fe/H]=-2.0. We demonstrate that 3D and NLTE effects are small for metal-poor stars on the Spite plateau, leading to errors of at most ±0.05dex if ignored. We present analytical functions evaluating the 3D NLTE and 1D NLTE corrections as a function of Teff [5000...6500K], logg [3.5...4.5], and LTE lithium abundance A(Li) [1.0...3.0] for a fixed grid of metallicities [Fe/H] [ - 3.0...0.0]. In addition, we also provide analytical fitting functions for directly converting a given lithium abundance into an equivalent width, or vice versa, a given equivalent width (EW) into a lithium abundance. For convenience, a Python script is made available that evaluates all fitting functions for given Teff, log g, [Fe/H], and A(Li) or EW.
Conclusions. By means of the fitting functions developed in this work, the results of complex 3D and NLTE calculations are made readily accessible and quickly applicable to large samples of stars across a wide range of metallicities. Improving the accuracy of spectroscopic lithium abundance determinations will contribute to a better understanding of the open questions related to the lithium content in metal-poor and solar-like stellar atmospheres.

Abstract Copyright: © ESO 2020

Journal keyword(s): stars: abundances - stars: atmospheres - stars: population II - radiative transfer - line: formation - line: profiles

Simbad objects: 3

goto Full paper

goto View the references in ADS

Number of rows : 3
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2024
#notes
1 SB 44 SB* 00 07 37.5160264968 -35 31 17.704959708   13.23 12.76 12.76   sdF 80 0
2 SDSS J002314.00+030758.0 * 00 23 14.0027073768 +03 07 58.241752572           A2II 21 0
3 NGC 6397 GlC 17 40 42.09 -53 40 27.6     5.17     ~ 1975 0

To bookmark this query, right click on this link: simbad:objects in 2020A&A...638A..58M and select 'bookmark this link' or equivalent in the popup menu