SIMBAD references

2020A&A...635A..96J - Astronomy and Astrophysics, volume 635A, 96-96 (2020/3-1)

The cosmic-ray content of the Orion-Eridanus superbubble.

JOUBAUD T., GRENIER I.A., CASANDJIAN J.M., TOLKSDORF T. and SCHLICKEISER R.

Abstract (from CDS):


Aims. The nearby Orion-Eridanus superbubble, which was blown by multiple supernovae several million years ago, has likely produced cosmic rays. Its turbulent medium is still energised by massive stellar winds and it can impact cosmic-ray transport locally. The γ radiation produced in interactions between cosmic rays and interstellar gas can be used to compare the cosmic-ray spectrum in the superbubble and in other regions near the Sun. It can reveal spectral changes induced in GeV to TeV cosmic rays by the past and present stellar activity in the superbubble.
Methods. We used ten years of data from the Fermi Large Area Telescope (LAT) in the 0.25-63GeV energy range to study the closer (Eridanus) end of the superbubble at low Galactic latitudes. We modelled the spatial and spectral distributions of the γ rays produced in the different gas phases (atomic, molecular, dark, and ionised) of the clouds found in this direction. The model included other non-gaseous components to match the data.
Results. We found that the γ-ray emissivity spectrum of the gas along the outer rim and in a shell inside the superbubble is consistent with the average spectrum measured in the solar neighbourhood. It is also consistent with the cosmic-ray spectrum directly measured in the Solar System. This homogeneity calls for a detailed assessment of the recent supernova rate and current census of massive stellar winds in the superbubble in order to estimate the epoch and rate of cosmic-ray production and to constrain the transport conditions that can lead to such homogeneity and little re-acceleration. We also found significant evidence that a diffuse atomic cloud lying outside the superbubble, at a height of 200-250pc below the Galactic plane, is pervaded by a 34% lower cosmic-ray flux, but with the same particle energy distribution as the local one. Super-GeV cosmic rays should freely cross such a light and diffuse cirrus cloud without significant loss or spectral distorsion. We tentatively propose that the cosmic-ray loss relates to the orientation of the magnetic field lines threading the cirrus, which point towards the halo according to the dust polarisation data from Planck. Finally, we gathered the present emissivity measurements with previous estimates obtained around the Sun to show how the local cosmic-ray flux decreases with Galactic height and to compare this trend with model predictions.

Abstract Copyright: © T. Joubaud et al. 2020

Journal keyword(s): acceleration of particles - ISM: bubbles - cosmic rays - local insterstellar matter - Galaxy: halo

Simbad objects: 25

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2020A&A...635A..96J and select 'bookmark this link' or equivalent in the popup menu