SIMBAD references

2019MNRAS.488.2108E - Mon. Not. R. Astron. Soc., 488, 2108-2120 (2019/September-2)

Planetary magnetic field control of ion escape from weakly magnetized planets.

EGAN H., JARVINEN R., MA Y. and BRAIN D.

Abstract (from CDS):

Intrinsic magnetic fields have long been thought to shield planets from atmospheric erosion via stellar winds; however, the influence of the plasma environment on atmospheric escape is complex. Here we study the influence of a weak intrinsic dipolar planetary magnetic field on the plasma environment and subsequent ion escape from a Mars-sized planet in a global three-dimensional hybrid simulation. We find that increasing the strength of a planet's magnetic field enhances ion escape until the magnetic dipole's standoff distance reaches the induced magnetosphere boundary. After this point increasing the planetary magnetic field begins to inhibit ion escape. This reflects a balance between shielding of the Southern hemisphere from 'misaligned' ion pickup forces and trapping of escaping ions by an equatorial plasmasphere. Thus, the planetary magnetic field associated with the peak ion escape rate is critically dependent on the stellar wind pressure. Where possible we have fit power laws for the variation of fundamental parameters (escape rate, escape power, polar cap opening angle, and effective interaction area) with magnetic field, and assessed upper and lower limits for the relationships.

Abstract Copyright: © 2019 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society

Journal keyword(s): plasmas - methods: numerical - planets and satellites: atmospheres - planets and satellites: magnetic fields

Simbad objects: 2

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2019MNRAS.488.2108E and select 'bookmark this link' or equivalent in the popup menu