2019ApJ...887...11H -
Astrophys. J., 887, 11-11 (2019/December-2)
Learning about the intermediate neutron-capture process from lead abundances.
HAMPEL M., KARAKAS A.I., STANCLIFFE R.J., MEYER B.S. and LUGARO M.
Abstract (from CDS):
Lead (Pb) is predominantly produced by the slow neutron-capture process (s process) in asymptotic giant branch (AGB) stars. In contrast to significantly enhanced Pb abundances predicted by low-mass, low-metallicity AGB models, observations of Magellanic post-AGB stars show incompatibly low Pb abundances. Observations of carbon-enhanced metal-poor (CEMP) stars whose s-process enrichments are accompanied by heavy elements traditionally associated with the rapid neutron-capture process (r process) have raised the need for a neutron-capture process operating at neutron densities intermediate to the s and r process: the so-called i process. We study i-process nucleosynthesis with single-zone nuclear-network calculations. Our i-process models can explain the heavy-element abundance patterns measured in Magellanic post-AGB stars including their puzzlingly low Pb abundances. Furthermore, the heavy-element enhancements in the post-AGB and CEMP-i stars, particularly their Pb abundance, allow us to characterize the neutron densities and exposures of the i process that produced the observed abundance patterns. We find that the lower-metallicity CEMP-i stars ([Fe/H]~-2.5) have heavy-element abundances best matched by models with higher neutron densities and exposures (τ > 2.0 mbarn–1) compared to the higher-metallicity post-AGB stars ([Fe/H]]~-1.3, τ < 1.3 mbarn–1). This offers new constraints and insights regarding the properties of i-process sites and demonstrates that the responsible process operates on timescales of the order of a few years or less.
Abstract Copyright:
© 2019. The American Astronomical Society. All rights reserved.
Journal keyword(s):
Asymptotic giant branch stars - Post-asymptotic giant branch - CEMP stars - Stellar abundances - Nuclear astrophysics - Nucleosynthesis - Stellar nucleosynthesis - Chemically peculiar stars - Carbon stars - Binary stars
Simbad objects:
34
Full paper
View the references in ADS
To bookmark this query, right click on this link: simbad:2019ApJ...887...11H and select 'bookmark this link' or equivalent in the popup menu