SIMBAD references

2019ApJ...873...31K - Astrophys. J., 873, 31-31 (2019/March-1)

The core mass function in the infrared dark cloud G28.37+0.07.


Abstract (from CDS):

In this paper, we analyze the 1.3 mm continuum ALMA data that cover the majority of the infrared dark cloud (IRDC) G28.37+0.07. With a spatial resolution of 0.''5 (2500 au at 5 kpc), the continuum image reveals five groups of dense cores. Each core group has a projected physical scale of about 1 pc, with core masses spanning a dynamic range of about 100. We use the dendrogram method (astrodendro) and a newly developed graph method (astrograph) to identify individual cores. The core masses are estimated through the millimeter continuum flux, assuming constant temperature and using an NH3-based gas temperature. We construct core mass functions (CMFs) based on the two methods and fit a power-law relation dN/d log M ∝ M–α to the CMFs for M > 0.79 M. In the constant-temperature scenario, astrograph gives α = 0.80 ± 0.10, while astrodendro gives α = 0.71 ± 0.11, both significantly shallower than the Salpeter-type initial mass function with α = 1.35. In the scenario where the NH3 gas temperature is applied to cores, astrograph gives α = 1.37 ± 0.06, while astrodendro gives α = 0.87 ± 0.07. Regional CMF slope variation is seen between the core groups. We also compare CMFs in three different environments, including IRDC G28.37+0.07, IRDC clumps, and G286.21+0.17, using the identical dendrogram method. Results show that IRDCs have smaller α than the cluster-forming cloud G286.21+0.17.

Abstract Copyright: © 2019. The American Astronomical Society. All rights reserved.

Journal keyword(s): dust, extinction - ISM: clouds - ISM: structure - stars: formation - stars: luminosity function, mass function - stars: protostars

Simbad objects: 21

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2019ApJ...873...31K and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact