SIMBAD references

2019ApJ...872..128V - Astrophys. J., 872, 128-128 (2019/February-3)

Forward modeling of the Kepler stellar rotation period distribution: interpreting periods from mixed and biased stellar populations.

VAN SADERS J.L., PINSONNEAULT M.H. and BARBIERI M.

Abstract (from CDS):

Stellar surface rotation carries information about stellar parameters-particularly ages-and thus the large rotational data sets extracted from Kepler time series represent powerful probes of stellar populations. In this article, we address the challenge of interpreting such data sets with a forward-modeling exercise. We combine theoretical models of stellar rotation, a stellar population model for the galaxy, and prescriptions for observational bias to predict the rotation distribution in the Kepler field under standard "vanilla" assumptions. We arrive at two central conclusions: first, that standard braking models fail to reproduce the observed distribution at long periods, and second, that the interpretation of the period distribution is complicated by a mixture of evolutionary states and observational uncertainties. If we assume that the detectability of rotational signatures scales with the Rossby number, we can show that the observed period distribution contains an apparent "Rossby edge" at Rothresh=2.08, above which long-period, high Rossby number stars are either absent or undetected. This threshold suggests either that weakened magnetic braking is in operation in the full Kepler population or that stars undergo a transition in spottedness and activity. We discuss the observations necessary to disentangle these competing scenarios. Regardless of the physical origin of the edge, it biases the inferred age distributions, affecting stars older than ∼9 Gyr at Teff=5100K, older than ∼4.2Gyr at solar temperatures, and 1.5Gyr at 6500 K. Below 5100K, rotation periods should be viable age diagnostics in even the oldest stars in the population.

Abstract Copyright: © 2019. The American Astronomical Society. All rights reserved.

Journal keyword(s): stars: evolution - stars: fundamental parameters - stars: magnetic field - stars: rotation - stars: solar-type

Simbad objects: 4

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2019ApJ...872..128V and select 'bookmark this link' or equivalent in the popup menu