2019A&A...631A.130B


Query : 2019A&A...631A.130B

2019A&A...631A.130B - Astronomy and Astrophysics, volume 631A, 130-130 (2019/11-1)

Enhanced cluster lensing models with measured galaxy kinematics.

BERGAMINI P., ROSATI P., MERCURIO A., GRILLO C., CAMINHA G.B., MENEGHETTI M., AGNELLO A., BIVIANO A., CALURA F., GIOCOLI C., LOMBARDI M., RODIGHIERO G. and VANZELLA E.

Abstract (from CDS):

We present an improved determination of the total mass distribution of three massive clusters from the Cluster Lensing and Supernova Survey with Hubble and Hubble Frontier Fields, MACS J1206.2-0847 (z=0.44), MACS J0416.1-2403 (z=0.40), Abell S1063 (z=0.35). We specifically reconstructed the sub-halo mass component with robust stellar kinematics information of cluster galaxies, in combination with precise strong lensing models based on large samples of spectroscopically identified multiple images. We used integral-field spectroscopy in the cluster cores, from the Multi Unit Spectroscopic Explorer on the Very Large Telescope, to measure the stellar velocity dispersion, σ, of 40-60 member galaxies per cluster, covering four to five magnitudes to mF160W~=21.5. We verified the robustness and quantified the accuracy of the velocity dispersion measurements with extensive spectral simulations. With these data, we determined the normalization and slope of the galaxy L-σ Faber-Jackson relation in each cluster and used these parameters as a prior for the scaling relations of the sub-halo population in the mass distribution modeling. When compared to our previous lens models, the inclusion of member galaxies' kinematics provides a similar precision in reproducing the positions of the multiple images. However, the inherent degeneracy between the central effective velocity dispersion, σ0, and truncation radius, rcut, of sub-halos is strongly reduced, thus significantly alleviating possible systematics in the measurements of sub-halo masses. The three independent determinations of the σ0-rcut scaling relation in each cluster are found to be fully consistent, enabling a statistical determination of sub-halo sizes as a function of σ0, or halo masses. Finally, we derived the galaxy central velocity dispersion functions of the three clusters projected within 16% of their virial radius, finding that they are well in agreement with each other. We argue that such a methodology, when applied to high-quality kinematics and strong lensing data, allows the sub-halo mass functions to be determined and compared with those obtained from cosmological simulations.

Abstract Copyright: © ESO 2019

Journal keyword(s): gravitational lensing: strong - galaxies: clusters: general - cosmology: observations - dark matter - galaxies: kinematics and dynamics

Simbad objects: 4

goto Full paper

goto View the references in ADS

Number of rows : 4
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2024
#notes
1 ACO 383 ClG 02 48 03.3915 -03 31 45.228           ~ 359 0
2 MCS J0416.1-2403 ClG 04 16 08.380 -24 04 20.80           ~ 336 0
3 MCS J1206.2-0847 ClG 12 06 12.2 -08 48 02           ~ 246 0
4 ACO S 1063 ClG 22 48 45.4 -44 31 42           ~ 319 0

To bookmark this query, right click on this link: simbad:objects in 2019A&A...631A.130B and select 'bookmark this link' or equivalent in the popup menu