2019A&A...631A..37B


Query : 2019A&A...631A..37B

2019A&A...631A..37B - Astronomy and Astrophysics, volume 631A, 37-37 (2019/11-1)

Consistent radial velocities of classical Cepheids from the cross-correlation technique.

BORGNIET S., KERVELLA P., NARDETTO N., GALLENNE A., MERAND A., ANDERSON R.I., AUFDENBERG J., BREUVAL L., GIEREN W., HOCDE V., JAVANMARDI B., LAGADEC E., PIETRZYNSKI G. and TRAHIN B.

Abstract (from CDS):


Context. Accurate radial velocities (vrad) of Cepheids are mandatory within the context of Cepheid distance measurements using the Baade-Wesselink technique. The most common vrad derivation method consists in cross-correlating the observed stellar spectra with a binary template and measuring a velocity on the resulting mean profile. Nevertheless, for Cepheids and other pulsating stars, the spectral lines selected within the template as well as the way of fitting the cross-correlation function (CCF) have a direct and significant impact on the measured vrad.
Aims. Our first aim is to detail the steps to compute consistent CCFs and vrad of Cepheids. Next, this study aims at characterising the impact of Cepheid spectral properties and vrad computation methods on the resulting line profiles and vrad time series.
Methods. We collected more than 3900 high-resolution spectra from seven different spectrographs of 64 Classical Milky Way (MW) Cepheids. These spectra were normalised and standardised using a single custom-made process on pre-defined wavelength ranges. We built six tailored correlation templates selecting unblended spectral lines of different depths based on a synthetic Cepheid spectrum, on three different wavelength ranges from 3900 to 8000 Å. Each observed spectrum was cross-correlated with these templates to build the corresponding CCFs, adopted as the proxy for the spectrum mean line profile. We derived a set of line profile observables as well as three different vrad measurements from each CCF and two custom proxies for the CCF quality and amount of signal.
Results. This study presents a large catalogue of consistent Cepheid CCFs and vrad time series. It confirms that each step of the process has a significant impact on the deduced vrad: the wavelength, the template line depth and width, and the vrad computation method. The way towards more robust Cepheid vrad time series seems to go through steps that minimise the asymmetry of the line profile and its impact on the vrad. Centroid or first-moment vrad, that exhibit slightly smaller amplitudes but significantly smaller scatter than Gaussian or biGaussian vrad, should therefore be favoured. Stronger or deeper spectral lines also tend to be less asymmetric and lead to more robust vrad than weaker lines.

Abstract Copyright: © S. Borgniet et al. 2019

Journal keyword(s): techniques: spectroscopic - techniques: radial velocities - stars: variables: Cepheids - stars: atmospheres

VizieR on-line data: <Available at CDS (J/A+A/631/A37): tablea1.dat rv-*.dat tpl-*.dat ccf-*.dat>

Simbad objects: 66

goto Full paper

goto View the references in ADS

Number of rows : 66
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2024
#notes
1 V* DL Cas cC* 00 29 58.5888773064 +60 12 43.065292140 10.66 9.88 8.63   7.582 G1Ib-IIHdel-1 331 0
2 V* V636 Cas cC* 01 32 43.2250253784 +63 35 37.699010016   8.486 7.176     G0Ib 109 0
3 * alf Eri Be* 01 37 42.84548 -57 14 12.3101 -0.36 0.30 0.46 0.49 0.60 B6Vpe 472 1
4 V* UZ Cet Mi* 02 06 05.7114849912 -10 12 45.310950792   10.18 8.95     M6III 23 0
5 V* V440 Per cC* 02 23 51.7443704208 +55 21 53.502677352 7.76 7.120 6.291     F8Ib-II 183 0
6 V* SU Cas cC* 02 51 58.7511911208 +68 53 18.606894036 6.92 6.44 5.80     F5.5III+ 424 1
7 V* RW Cam cC* 03 54 21.7663072128 +58 39 11.998608120   10.02 8.72   7.054 F8 174 0
8 V* AW Per cC* 04 47 46.3149227688 +36 43 22.033952832   8.46 7.51   6.200 F0+B6: 221 0
9 V* RX Aur cC* 05 01 23.1881833128 +39 57 37.423107252   8.49 7.62   6.594 G0III 210 0
10 * bet Dor cC* 05 33 37.5159729864 -62 29 23.376457680 5.13 4.58 3.76 3.55 3.12 F8/G0Ib 377 0
11 V* T Mon cC* 06 25 12.9996760920 +07 05 08.558582892 8.24 7.20 5.98   4.996 G3Iabv+A0p 464 1
12 * 48 Aur cC* 06 28 34.0881845487 +30 29 34.929596860 6.73 6.23 5.55   4.777 F5.5-G0Ib 382 0
13 * zet Gem cC* 07 04 06.5312384690 +20 34 13.074474962 5.20 4.58 3.79   3.082 G1Ib 569 0
14 * y03 Pup cC* 07 38 18.2084341776 -48 36 05.164557768   6.314 5.658 6.94   F7Ib/II 118 0
15 V* VZ Pup cC* 07 38 35.2380326136 -28 29 58.597431036   11.469 10.154 9.583   F7.5 148 1
16 V* AH Vel cC* 08 11 59.9667243312 -46 38 39.658236936   6.35 5.76     F7Ib/II 174 0
17 V* RS Pup cC* 08 13 04.2157111224 -34 34 42.696447852 8.89 8.51 7.04   5.453 F8Iab 347 0
18 V* RZ Vel cC* 08 37 01.3028699904 -44 06 52.846248456   8.507 7.260     G1Ib 224 0
19 * l Car cC* 09 45 14.8117044917 -62 30 28.450312664   5.09 3.75     G5Iab/b 318 0
20 V* YZ Car cC* 10 28 16.8452893296 -59 21 00.678355560 9.79 9.11 8.24   7.443 G5 134 0
21 V* Y Car cC* 10 33 10.8500390952 -58 29 55.095062136   8.75 8.16     F0/3 143 0
22 V* WZ Car cC* 10 55 18.7271183664 -60 56 23.951331672   10.40 9.37     F8 149 0
23 V* U Car cC* 10 57 48.1866744768 -59 43 55.883482140 8.31 7.21 6.11   5.073 G5/8Iab 230 0
24 V* S Mus cC* 12 12 47.0199008472 -70 09 06.439196664 7.58 8.80 8.33 7.39 5.196 F6Ib+B5V 258 0
25 * 35 Cru cC* 12 31 40.3303562544 -59 25 26.124690324 6.60 6.19 5.53     F7Ib/II 140 0
26 V* R Mus cC* 12 42 05.0260775712 -69 24 27.197699652 7.65 7.11 6.33   5.499 F7Ib 164 0
27 V* S Cru cC* 12 54 21.9975732000 -58 25 50.215759464 7.94 7.34 6.58   5.730 F7Ib/II 190 0
28 V* V659 Cen cC* 13 31 33.4105951824 -61 34 56.518628628 7.57 7.19 6.49     F6/7Ib+B6V 109 0
29 V* BP Cir cC* 14 46 41.9805572256 -61 27 42.991255656   8.12 7.52     F2/3II+B6V 93 0
30 V* AV Cir cC* 14 50 30.2963681976 -67 29 51.440367300   8.29 7.44   6.358 F7II 81 0
31 * 26 Cir cC* 14 52 35.2587595008 -63 48 35.356730796   6.66 5.96   4.993 F8II 141 0
32 V* R TrA cC* 15 19 45.7128267840 -66 29 45.743160624 7.29 6.96 6.39   5.844 F7Ib/II 189 0
33 V* S Nor cC* 16 18 51.8316855000 -57 53 59.256000852 8.15 7.49 6.49   5.427 F8/G0Ib 374 1
34 V* V340 Ara cC* 16 45 19.1125726896 -51 20 33.393735924   11.39 10.03     ~ 83 0
35 V* V636 Sco cC* 17 22 46.4815445448 -45 36 51.401229048   7.67 6.74   5.654 F7/8Ib/II 156 1
36 V* X Sgr cC* 17 47 33.6239490288 -27 49 50.835778896 5.84 5.34 4.54 6.03 3.661 F7II 333 0
37 V* Y Oph cC* 17 52 38.7019050072 -06 08 36.874071816 8.62 7.61 6.21     G3Ia 363 0
38 V* AV Sgr cC* 18 04 48.7861680960 -22 43 56.639297172   13.39 11.49   10.595 ~ 67 0
39 * gam01 Sgr cC* 18 05 01.2264355704 -29 34 48.322222356 5.99 5.47 4.69   3.869 G0Ib/II 348 0
40 V* Y Sgr cC* 18 21 22.9862401944 -18 51 36.006450458 7.31 6.69 5.75   4.810 F8II 289 0
41 V* UZ Sct cC* 18 31 22.3668789696 -12 55 43.335648156   13.23 10.91   9.195 G0 87 0
42 V* U Sgr cC* 18 31 53.3323107600 -19 07 30.261459540 8.50 7.81 6.68   5.413 G1Ib 467 0
43 V* EW Sct cC* 18 37 51.1112159832 -06 47 48.494842332   9.50 7.96     F8Ib/II 110 0
44 V* RU Sct cC* 18 41 56.3818572048 -04 06 38.376404820   10.17 8.82     G5 201 0
45 V* V350 Sgr cC* 18 45 17.4968424336 -20 38 50.552766852   8.321 7.450 8.41 6.421 F8Ib/II 217 0
46 V* V1496 Aql cC* 18 54 59.5330009152 -00 04 36.367589460   12.449 10.226   7.756 ~ 22 0
47 V* FF Aql cC* 18 58 14.7483041520 +17 21 39.297557628 6.61 6.18 5.38     F6Ib 364 0
48 V* TT Aql cC* 19 08 13.7497129848 +01 17 55.147982640 8.96 7.86 6.50   5.699 G0/2Ib 281 0
49 V* V496 Aql cC* 19 08 20.7707435688 -07 26 15.879957540   8.88 7.79     F8/G0Iab/b 183 0
50 V* FM Aql cC* 19 09 15.9900952128 +10 33 08.961371208 9.76 9.05 7.89   6.725 F2I 188 0
51 V* U Aql cC* 19 29 21.3614645376 -07 02 38.662110240 8.41 7.71 6.61   5.270 F5I/II+B9.8V 283 0
52 V* U Vul cC* 19 36 37.7293294920 +20 19 58.576725768   8.368 7.162   5.556 F8Iab 230 0
53 V* SU Cyg cC* 19 44 48.7341456312 +29 15 52.895535048 7.10 6.88 6.44 6.06 5.84 F2Iab:+B8.0V 299 0
54 V* S Vul cC* 19 48 23.8063718736 +27 17 11.428754460   11.392 9.551 8.775   K0 192 0
55 V* SV Vul cC* 19 51 30.9059845128 +27 27 36.837672012 8.65 9.00 6.74   5.703 F8Ia 433 0
56 * eta Aql cC* 19 52 28.3689223781 +01 00 20.371980515 5.12 4.61 3.80   3.030 F6Iab+B9.8V 672 0
57 * 10 Sge cC* 19 56 01.2628947456 +16 38 05.262056412 6.45 6.03 5.36 6.81 4.789 F7Ib 349 0
58 V* CD Cyg cC* 20 04 26.5612467720 +34 06 44.187399612   9.35 8.35     F8-G5Iab-Ib 205 0
59 V* X Cyg cC* 20 43 24.1917118680 +35 35 16.077149700 8.69 7.70 6.47   5.241 F7Ib 469 0
60 V* T Vul cC* 20 51 28.2383768376 +28 15 01.819622952 6.89 6.49 5.77   5.061 F5Ib+A0.8V 341 0
61 V* TX Cyg cC* 21 00 06.3809839512 +42 35 51.215534592   11.3 9.50   7.168 F5.5Ib-G5Ib: 154 0
62 V* V1334 Cyg cC* 21 19 22.1791528656 +38 14 14.868825648   6.364 5.882     F1II+B7.0V 190 0
63 V* VZ Cyg cC* 21 51 41.4416202624 +43 08 02.542086024   10.02 8.60   7.948 G0 170 0
64 V* Y Lac cC* 22 09 02.9002579560 +51 02 45.084186096   9.79 9.13   8.292 F8 175 0
65 * del Cep cC* 22 29 10.2626640314 +58 24 54.697613650 4.71 4.35 3.75   3.219 F5Iab:+B7-8 729 0
66 V* X Lac cC* 22 49 03.1807630560 +56 25 41.530963044   9.21 8.42     G5 171 0

To bookmark this query, right click on this link: simbad:objects in 2019A&A...631A..37B and select 'bookmark this link' or equivalent in the popup menu