SIMBAD references

2018ApJ...863..191J - Astrophys. J., 863, 191-191 (2018/August-3)

Dust in the wind: composition and kinematics of galaxy outflows at the peak epoch of star formation.

JONES T., STARK D.P. and ELLIS R.S.

Abstract (from CDS):

Galactic-scale outflows regulate the stellar mass growth and chemical enrichment of galaxies, yet key outflow properties such as the chemical composition and mass-loss rate remain largely unknown. We address these properties with Keck/ESI echellete spectra of nine gravitationally lensed z ≃ 2-3 star-forming galaxies, probing a range of absorption transitions. Interstellar absorption in our sample is dominated by outflowing material with typical velocities of ∼-150 kms–1. Approximately 80% of the total column density is associated with a net outflow. Mass-loss rates in the low-ionization phase are comparable to or in excess of the star formation rate, with total outflow rates likely higher when accounting for ionized gas. On the order of half of the heavy element yield from star formation is ejected in the low-ionization phase, confirming that outflows play a critical role in regulating galaxy chemical evolution. Covering fractions vary and are in general non-uniform, with most galaxies having incomplete covering by the low ions across all velocities. Low-ion abundance patterns show remarkably little scatter, revealing a distinct "chemical fingerprint" of outflows. Gas-phase Si/Fe abundances are significantly supersolar ([Si/Fe] >= 0.4), indicating a combination of α-enhancement and dust depletion. The derived properties are comparable to the most kinematically broad, metal-rich, and depleted intergalactic absorption systems at similar redshifts, suggesting that these extreme systems are associated with galactic outflows at impact parameters conservatively within a few tens of kiloparsecs. We discuss implications of the abundance patterns in z ≃ 2-3 galaxies and the role of outflows at this epoch.

Abstract Copyright: © 2018. The American Astronomical Society. All rights reserved.

Journal keyword(s): galaxies: evolution - galaxies: ISM

Simbad objects: 15

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2018ApJ...863..191J and select 'bookmark this link' or equivalent in the popup menu